This material is not required and is posted only for the curious. It is a beautiful and powerful proof, but the technical details are not our focus beyond the synergy of preservation and progress. We skipped most of the low-level details in class.

Syntax

\[
\begin{align*}
\text{e} & ::= c \mid \lambda x\ . \ e \mid x \mid e \ e \\
\text{v} & ::= c \mid \lambda x\ . \ e \\
\text{\tau} & ::= \text{int} \mid \tau \rightarrow \tau \\
\Gamma & ::= \cdot \mid \Gamma, x: \tau
\end{align*}
\]

Evaluation Rules (a.k.a. Dynamic Semantics)

\[
\begin{array}{c}
\text{E-Apply} \\
(\lambda x\ . \ e) \ v \rightarrow e[v/x]
\end{array}
\quad
\begin{array}{c}
\text{E-App1} \\
e_1 \rightarrow e'_1 \\
e_1 \ e_2 \rightarrow e'_1 \ e_2
\end{array}
\quad
\begin{array}{c}
\text{E-App2} \\
e_2 \rightarrow e'_2 \\
v \ e_2 \rightarrow v \ e'_2
\end{array}
\]

Typing Rules (a.k.a. Static Semantics)

\[
\begin{array}{c}
\text{T-Const} \\
\Gamma \vdash c : \text{int}
\end{array}
\quad
\begin{array}{c}
\text{T-Var} \\
\Gamma \vdash x : \Gamma(x)
\end{array}
\quad
\begin{array}{c}
\text{T-Fun} \\
\Gamma, x : \tau_1 \vdash e : \tau_2 \\
x \not\in \text{Dom}(\Gamma)
\end{array}
\quad
\begin{array}{c}
\text{T-Fun} \\
\Gamma \vdash \lambda x.\ e : \tau_1 \rightarrow \tau_2
\end{array}
\]

\[
\begin{array}{c}
\text{T-App} \\
\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \\
\Gamma \vdash e_2 : \tau_2
\end{array}
\quad
\begin{array}{c}
\Gamma \vdash e_1 \ e_2 : \tau_1
\end{array}
\]

Type Soundness

Theorem (Type Soundness). If \(\cdot \vdash e : \tau \) and \(e \rightarrow^* e' \), then either \(e' \) is a value or there exists an \(e'' \) such that \(e' \rightarrow e'' \).
Proof

The Type Soundness Theorem follows as a simple corollary to the Progress and Preservation Theorems stated and proven below: Given the Preservation Theorem, a trivial induction on the number of steps taken to reach \(e' \) from \(e \) establishes that \(\cdot \vdash e' : \tau \). Then the Progress Theorem ensures \(e' \) is a value or can step to some \(e'' \).

We need the following lemma for our proof of Progress, below.

Lemma (Canonical Forms). If \(\cdot \vdash v : \tau \), then

i. If \(\tau \) is \(\text{int} \), then \(v \) is a constant, i.e., some \(c \).

ii. If \(\tau \) is \(\tau_1 \rightarrow \tau_2 \), then \(v \) is a lambda, i.e., \(\lambda x. e \) for some \(x \) and \(e \).

Canonical Forms. The proof is by inspection of the typing rules.

i. If \(\tau \) is \(\text{int} \), then the only rule which lets us give a value this type is T-Const.

ii. If \(\tau \) is \(\tau_1 \rightarrow \tau_2 \), then the only rule which lets us give a value this type is T-Fun.

Theorem (Progress). If \(\cdot \vdash e : \tau \), then either \(e \) is a value or there exists some \(e' \) such that \(e \rightarrow e' \).

Progress. The proof is by induction on (the height of) the derivation of \(\cdot \vdash e : \tau \), proceeding by cases on the bottommost rule used in the derivation.

T-Const \(e \) is a constant, which is a value, so we are done.

T-Var Impossible, as \(\Gamma \) is \(\cdot \).

T-Fun \(e \) is \(\lambda x. e' \), which is a value, so we are done.

T-App \(e \) is \(e_1 \) \(e_2 \).

By inversion, \(\cdot \vdash e_1 : \tau' \rightarrow \tau \) and \(\cdot \vdash e_2 : \tau' \) for some \(\tau' \).

If \(e_1 \) is not a value, then \(\cdot \vdash e_1 : \tau' \rightarrow \tau \) and the induction hypothesis ensures \(e_1 \rightarrow e'_1 \) for some \(e'_1 \). Therefore, by E-App1, \(e_1 \) \(e_2 \rightarrow e'_1 \) \(e_2 \).

Else \(e_1 \) is a value. If \(e_2 \) is not a value, then \(\cdot \vdash e_2 : \tau' \) and our induction hypothesis ensures \(e_2 \rightarrow e'_2 \) for some \(e'_2 \). Therefore, by E-App2, \(e_1 \) \(e_2 \rightarrow e_1 \) \(e'_2 \).

Else \(e_1 \) and \(e_2 \) are values. Then \(\cdot \vdash e_1 : \tau' \rightarrow \tau \) and the Canonical Forms Lemma ensures \(e_1 \) is some \(\lambda x. e' \). And \((\lambda x. e') \) \(e_2 \rightarrow e'[e_2/x] \) by E-Apply, so \(e_1 \) \(e_2 \) can take a step.
We will need the following lemma for our proof of Preservation, below. Actually, in the proof of Preservation, we need only a Substitution Lemma where Γ is ·, but proving the Substitution Lemma itself requires the stronger induction hypothesis using any Γ.

Lemma (Substitution). If Γ, x:τ′ ⊢ e : τ and Γ ⊢ e′ : τ′, then Γ ⊢ e[e'/x] : τ.

To prove this lemma, we will need the following two technical lemmas, which we will assume without proof (they’re not that difficult).

Lemma (Weakening). If Γ ⊢ e : τ and x ∉ Dom(Γ), then Γ, x:τ′ ⊢ e : τ.

Lemma (Exchange). If Γ, x:τ, y:τ2 ⊢ e : τ and y ≠ x, then Γ, y:τ2, x:τ1 ⊢ e : τ.

Now we prove Substitution.

Substitution. The proof is by induction on the derivation of Γ, x:τ′ ⊢ e : τ. There are four cases. In all cases, we know Γ ⊢ e′ : τ′ by assumption.

T-Const e is c, so e[e'/x] is c. By **T-Const**, Γ ⊢ c : int.

T-Var e is y and Γ, x:τ′ ⊢ y : τ.

If y ≠ x, then y[e'/x] is y. By inversion on the typing rule, we know that (Γ, x:τ′)(y) = τ. Since y ≠ x, we know that Γ(y) = τ. So by **T-Var**, Γ ⊢ y : τ.

If y = x, then y[e'/x] is e′. Γ, x:τ′ ⊢ x : τ, so by inversion, (Γ, x:τ′)(x) = τ, so τ = τ′. We know Γ ⊢ e′ : τ′, which is exactly what we need.

T-App e is e1 e2, so e[e'/x] is (e1[e'/x]) (e2[e'/x]).

We know Γ, x:τ′ ⊢ e1 e2 : τ1, so, by inversion on the typing rule, we know Γ, x:τ′ ⊢ e1 : τ2 → τ1 and Γ, x:τ′ ⊢ e2 : τ2 for some τ2.

Therefore, by induction, Γ ⊢ e1[e'/x] : τ2 → τ1 and Γ ⊢ e2[e'/x] : τ2.

Given these, **T-App** lets us derive Γ ⊢ (e1[e'/x]) (e2[e'/x]) : τ1.

So by the definition of substitution Γ ⊢ (e1 e2)[e'/x] : τ1.

T-Fun e is λy. e_b, so e[e'/x] is λy. (e_b[e'/x]).

We can α-convert λy. e_b to ensure y ∉ Dom(Γ) and y ≠ x.

We know Γ, x:τ′ ⊢ λy. e_b : τ1 → τ2, so, by inversion on the typing rule, we know Γ, x:τ′, y:τ1 ⊢ e_b : τ2.

By Exchange, we know that Γ, y:τ1, x:τ′ ⊢ e_b : τ2.

By Weakening, we know that Γ, y:τ1 ⊢ e′ : τ′.

We have rearranged the two typing judgments so that our induction hypothesis applies (using Γ, y:τ1 for the typing context called Γ in the statement of the lemma), so, by induction, Γ, y:τ1 ⊢ e_b[e'/x] : τ2.

Given this, **T-Fun** lets us derive Γ ⊢ λy. e_b[e'/x] : τ1 → τ2.

So by the definition of substitution, Γ ⊢ (λy. e_b)[e'/x] : τ1 → τ2.

3
Theorem (Preservation). If \(\cdot \vdash e : \tau \) and \(e \rightarrow e' \), then \(\cdot \vdash e' : \tau \).

Preservation. The proof is by induction on the derivation of \(\cdot \vdash e : \tau \). There are four cases.

T-Const \(e \) is \(c \). This case is impossible, as there is no \(e' \) such that \(c \rightarrow e' \).

T-Var \(e \) is \(x \). This case is impossible, as \(x \) cannot be typechecked under the empty context.

T-Fun \(e \) is \(\lambda x. e_b \). This case is impossible, as there is no \(e' \) such that \(\lambda x. e_b \rightarrow e' \).

T-App \(e \) is \(e_1 e_2 \), so \(\cdot \vdash e_1 e_2 : \tau \).

By inversion on the typing rule, \(\cdot \vdash e_1 : \tau_2 \rightarrow \tau \) and \(\cdot \vdash e_2 : \tau_2 \) for some \(\tau_2 \).

There are three possible rules for deriving \(e_1 e_2 \rightarrow e' \).

E-App1 Then \(e' = e'_1 e_2 \) and \(e_1 \rightarrow e'_1 \).

By \(\cdot \vdash e_1 : \tau_2 \rightarrow \tau \), \(e_1 \rightarrow e'_1 \), and induction, \(\cdot \vdash e'_1 : \tau_2 \rightarrow \tau \).

Using this and \(\cdot \vdash e_2 : \tau_2 \), T-App lets us derive \(\cdot \vdash e'_1 e_2 : \tau \).

E-App2 Then \(e' = e_1 e'_2 \) and \(e_2 \rightarrow e'_2 \).

By \(\cdot \vdash e_2 : \tau_2 \), \(e_2 \rightarrow e'_2 \), and induction \(\cdot \vdash e'_2 : \tau_2 \).

Using this and \(\cdot \vdash e_1 : \tau_2 \rightarrow \tau \), T-App lets us derive \(\cdot \vdash e_1 e'_2 : \tau \).

E-Apply Then \(e_1 \) is \(\lambda x. e_b \) for some \(x \) and \(e_b \), and \(e' = e_b[e_2/x] \).

By inversion of the typing of \(\cdot \vdash e_1 : \tau_2 \rightarrow \tau \), we have \(\cdot, x : \tau_2 \vdash e_b : \tau \).

This and \(\cdot \vdash e_2 : \tau_2 \) lets us use the Substitution Lemma to conclude \(\cdot \vdash e_b[e_2/x] : \tau \).