
CSEP505: Programming Languages
Lecture 9: Haskell Typeclasses and Monads;

Dan Grossman
Autumn 2016

Acknowledgments

• Slide content liberally appropriated with permission from
Kathleen Fisher, Tufts University

• She in turn acknowledges Simon Peyton Jones, Microsoft

Research, Cambridge “for some of these slides”

• And then I probably introduced errors and weaknesses as I
changed them [and added the material on the Monad type-class
and wrote the accompanying code file]…

• Also note: This lecture relies heavily on lec9.hs

• Then onto OOP as a separate topic (acks not applicable)

Lecture 9 CSE P505 Autumn 2016 Dan Grossman 2

Generics vs. Overloading [again]

• Parametric polymorphism:
– Single algorithm may be given many types
– Type variable may be replaced by any type
– If f::t->t then f::Int->Int, f::Bool->Bool, ...

• Overloading

– Single symbol may refer to more than one algorithm
– Each algorithm may have different type
– Choice of algorithm determined by type context
– + has types Int->Int->Int and Float->Float->Float,

but not t->t->t for arbitrary t

Lecture 9 CSE P505 Autumn 2016 Dan Grossman 3

Why overloading?

Many useful functions are not parametric

• Can member work for any list type?

No! Only for types a for that support equality

• Can sort work for any list type?

No! Only for types a that support ordering

• Can serialize work for any type?

No! Only for types a that support ordering

 Lecture 9 CSE P505 Autumn 2016 Dan Grossman 4

member :: [a] -> a -> Bool

sort :: [a] -> [a]

serialize :: a -> String

How you do this in OCaml/SML

The general always-works approach is have callers pass
function(s) to perform the operations:

Works fine but:
– A pain to thread the function(s) everywhere
– End up wanting a record of functions, a “dictionary”
– Now have to thread right dictionaries to right places
– Types get a little messier?

Lecture 9 CSE P505 Autumn 2016 Dan Grossman 5

member :: (a -> a -> Bool)-> [a] -> a -> Bool
member _ [] _ = False
member eqFun (x:xs) v = eqFun x v
 || member eqFun xs v

See code Part 1

• Part 1 of lec9.hs does “explicit dictionary passing”
– Works fine in Haskell and would work fine in OCaml too
– Lets us use write “generic” algorithms provided caller gives a

dictionary (e.g., double or sumOfSquares)
– Can even use dictionaries to build other dictionaries (e.g.,
complexDictMaker)

– Funny dictionaries can produce funny results (e.g.,
fortyTwo)

Lecture 9 CSE P505 Autumn 2016 Dan Grossman 6

Enter Type Classes

Type-classes are built-in support for implicit dictionary-passing

• Concise types to describe [records of] overloaded functions
• Sophisticated standard library of type classes for [all the] common

purposes
• But nothing “privileged” in the library/language: Users can declare

their own type classes (nothing special about ==, +, etc.)
• Interacts well enough with type inference [won’t study the “magic”]

And/but:
• Ends up “taking over the language and standard library”
• Lots of fancy features that are super-useful, but we’ll have time for

just a quick exposure beyond the basics

Lecture 9 CSE P505 Autumn 2016 Dan Grossman 7

Type Class Design Overview

• [Step 0: Do not try to compare these things to OOP classes and
such; they are different. Will study OOP next.]

• Step 1: Type class declarations
– Define a set of [typed] operations and give the set a name
– Example: The Eq a type-class has operations == and /=

both of type a -> a -> Bool
• Step 2: Instance declarations

– Specify the implementations for a particular type
– Examples: for Int, == is integer equality, for String, == is

string equality (but could have decided case-insensitive)
• Step 3: Qualified types

– Use qualified types to express that a polymorphic type must
be an instance of your type class

– Example: member’ :: Eq a => [a] -> a -> Bool
Lecture 9 CSE P505 Autumn 2016 Dan Grossman 8

Qualified types

member’ :: Eq a => [a] -> a -> Bool

• Very roughly like a bound on the type variable
– Caller must instantiate type variable with a type that is known

to be an instance of the class
– Callee may assume the type is an instance of the class (so

can use the operations)
– So “fewer” callers type-check and “more” callees type-check

• At run-time, the right dictionary will be implicitly passed and used

– Call-site “knows which dictionary”
– Calls in callee “use the dictionary”

Lecture 9 CSE P505 Autumn 2016 Dan Grossman 9

More Examples

Lecture 9 CSE P505 Autumn 2016 Dan Grossman 10

sort :: Ord a => [a] -> [a]
reverse :: [a] -> [a]
square :: Num a => a -> a
squarePair :: (Num a, Num b) => (a,b) -> (a,b)
stringOfMin :: (Ord a, Show a) => [a] -> String

Our own classes and instances

• The class declaration gives names and types to operations
• An instance declaration provides the operations’ implementations

Lecture 9 CSE P505 Autumn 2016 Dan Grossman 11

class MyNum a where
 plus' :: a -> a -> a
 times' :: a -> a -> a
 neg' :: a -> a
 zero' :: a

instance MyNum Int where
 plus' = (+)
 times' = (*)
 neg' = \x -> -1 * x
 zero' = 0

instance MyNum Float where
 plus' = (+)
 times' = (*)
 neg' = \x -> -1.0 * x
 zero' = 0.0

Then use them

• Use qualified types to write algorithms over overloaded operations

Lecture 9 CSE P505 Autumn 2016 Dan Grossman 12

member' :: Eq a => [a] -> a -> Bool
member' [] v = False
member' (x:xs) v = (==) x v || member' xs v

double' :: MyNum a => a -> a
double' v = (plus' (plus' v v) zero')

sumOfSquares' :: MyNum a => [a] -> a
sumOfSquares' [] = zero'
sumOfSquares' (x:xs) = plus' (times' x x) (sumOfSquares' xs)

i8 = double' 4
f8 = double' 4.0
yes = member' [3,4,5] 4
no = member' ["hi", "bye"] "foo"

Compositionality of functions

• Overloaded functions can be defined using other overloaded
functions

• quadAndFour “doesn’t know” what dictionary it was passed,
but it knows which dictionary to pass to each of its calls to
square

Lecture 9 CSE P505 Autumn 2016 Dan Grossman 13

square :: Num a => a -> a
square x = x * x

quadAndFour :: Num a => a -> (a,Int)
quadAndFour x = (square x * square x, square 2)

eg = quadAndFour 3.0 -- (81.0, 4)

Compositionality of Instances

• Can use qualified instances to build compound instances in
terms of simpler ones

• Simple example from standard library:

• A little more complicated example: see lec9.hs for
 instance MyNum a => MyNum (Complex a) ...

 Lecture 9 CSE P505 Autumn 2016 Dan Grossman 14

class Eq a where
 (==) :: a -> a -> Bool

instance Eq Int where
 (==) = intEq -- intEq primitive equality

instance (Eq a, Eq b) => Eq (a,b) where
 (==) (u,v) (x,y) = (u == x) && (v == y)

instance Eq a => Eq [a] where
 (==) [] [] = True
 (==) (x:xs) (y:ys) = x==y && xs == ys
 (==) _ _ = False

Subclasses

• Can specify “any instance of class Foo must also be an instance
of class Bar”
– Example: Ord a subclass of Eq
– Example: Fractional a subclass of Num

• (Fractional supports real division and reciprocals)
• Easy to define:

• An instance must provide everything in the superclass (too)
• Makes a qualified type “provide more”

• This still isn’t OOP classes [we are defining and passing

dictionaries separately and with static type resolution]
 Lecture 9 CSE P505 Autumn 2016 Dan Grossman 15

class Eq a => Ord a where -- defines Ord a
 ...

Default methods

• A class declaration can provide default implementations
– Including in terms of other implementations
– Instances can override the default or not
– Example: not-equal as not of equal
– Example: >= as > or ==
– Example: arbitrary result like 42

• This still isn’t OOP classes [we are defining and passing
dictionaries separately and with static type resolution]

Lecture 9 CSE P505 Autumn 2016 Dan Grossman 16

-- Minimal complete definition: (==) or (/=)
class Eq a where
 (==) :: a -> a -> Bool
 x == y = not (x /= y)
 (/=) :: a -> a -> Bool
 x /= y = not (x == y)

No, really, it’s not OOP

• Dictionaries and method suites (vtables) are similar

But…

• As we have said:
– Dictionaries “travel” separately from values
– Method resolution is static in Haskell, based on types

• Also:
– Constrains polymorphism, does not introduce subtyping
– Can add instance declarations for types “retroactively”
– Dictionary selection can depend on result types:
 fromInteger :: Num a => Integer -> a

Lecture 9 CSE P505 Autumn 2016 Dan Grossman 17

Topics to skip

Very useful for practical programming but a bit off our trajectory:

• deriving to get automatic instances from data definitions

– Example: Show a tree

• Support for numeric literals using the fromInteger operation
that lets you use 0, 3, 79, etc. in any instance of Num

• Interaction with type inference
– Mostly “works fine”
– Various details, including do not reuse operation names

across classes in same scope

Lecture 9 CSE P505 Autumn 2016 Dan Grossman 18

Now constructor classes

• Recall:
– Int, [Int], Complex Int, Bool, Int -> Int, etc. are

types
– [-], Tree, etc. are type constructors (given a type, produce

a type)

• We can define type classes for type constructors
– Nothing really “new” here
– Harder to read at first, but “arity” of the constructor is inferred

from use in class declaration

• See Part 3 of lec9.hs for instances and uses of this example:

Lecture 9 CSE P505 Autumn 2016 Dan Grossman 19

class HasMap g where
 map' :: (a -> b) -> g a -> g b

Now back to monad

• Monad is a constructor class just like HasMap (!!)
– “Required” operations are >>= and return
– Default operations for things like >>
– IO is “just” one “special” instance of monad
– There are many useful instances of monad
– Any instance of monad can use do-notation since it’s just

sugar for calls to >>=

• See Parts 4, 5, and 6 of lec9.hs to blow your mind

Lecture 9 CSE P505 Autumn 2016 Dan Grossman 20

Summary of all that (!)

• “Part 4”
– Monad is a constructor typeclass
– Instance Monad Maybe’gives intuitive definitions to >>=

and return
– do-notation for “maybe” can be much less painful than life

without it
• “Part 5”

– Naturally, can write code generic over “which monad instance”
– So can reuse combinators like
 sequence :: Monad m => [m a]-> m [a]

• “Part 6”
– State monad definition is purely functional but looks-and-feels

like imperative programming when using it

Lecture 9 CSE P505 Autumn 2016 Dan Grossman 21

Other cheats

• So type classes seem to work pretty well
– Haskell has, over time, committed to them ever-more fully

• Without them, you can:
– Do explicit dictionary passing
– “Cheat” in various ways:

• SML: special support for Eq and nothing else
– Oh also +, *, etc. for int and float

• OCaml: cheat on key functions like hash and = being
allegedly fully polymorphic but can fail at runtime and/or
violate abstractions

• C++: OOP or code duplication, neither of which is the same??

Lecture 9 CSE P505 Autumn 2016 Dan Grossman 22

