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• Also note: This lecture relies heavily on lec9.hs 
 

• Then onto OOP as a separate topic (acks not applicable) 
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Generics vs. Overloading [again] 

• Parametric polymorphism: 
– Single algorithm may be given many types 
– Type variable may be replaced by any  type 
– If f::t->t then f::Int->Int, f::Bool->Bool, ... 

 
• Overloading 

– Single symbol may refer to more than one algorithm 
– Each algorithm may have different type 
– Choice of algorithm determined by type context 
– + has types Int->Int->Int and Float->Float->Float, 

but not t->t->t for arbitrary t 
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Why overloading? 

Many useful functions are not parametric 
 
• Can member work for any list type? 

 
No!  Only for types a for that support equality 

• Can sort work for any list type? 
 

No!  Only for types a that support ordering 
 

• Can serialize work for any type? 
 

No!  Only for types a that support ordering 
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member :: [a] -> a -> Bool 
 

sort :: [a] -> [a] 

serialize :: a -> String 

How you do this in OCaml/SML 

The general always-works approach is have callers pass 
function(s) to perform the operations: 
 
 
 
 
 
 

Works fine but: 
– A pain to thread the function(s) everywhere 
– End up wanting a record of functions, a “dictionary” 
– Now have to thread right dictionaries to right places 
– Types get a little messier? 
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member :: (a -> a -> Bool)-> [a] -> a -> Bool 
member _ [] _ = False 
member eqFun (x:xs) v = eqFun x v  
                        || member eqFun xs v 

See code Part 1 

• Part 1 of lec9.hs does “explicit dictionary passing” 
– Works fine in Haskell and would work fine in OCaml too 
– Lets us use write “generic” algorithms provided caller gives a 

dictionary (e.g., double or sumOfSquares) 
– Can even use dictionaries to build other dictionaries (e.g., 
complexDictMaker) 

– Funny dictionaries can produce funny results (e.g., 
fortyTwo) 
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Enter Type Classes 

Type-classes are built-in support for implicit dictionary-passing  
 
• Concise types to describe [records of] overloaded functions 
• Sophisticated standard library of type classes for [all the] common 

purposes 
• But nothing “privileged” in the library/language: Users can declare 

their own type classes (nothing special about ==, +, etc.) 
• Interacts well enough with type inference [won’t study the  “magic”] 

 
And/but: 
• Ends up “taking over the language and standard library” 
• Lots of fancy features that are super-useful, but we’ll have time for 

just a quick exposure beyond the basics 
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Type Class Design Overview 

• [Step 0: Do not try to compare these things to OOP classes and 
such; they are different.  Will study OOP next.] 

• Step 1: Type class declarations 
– Define a set of [typed] operations and give the set a name 
– Example: The Eq a type-class has operations == and /= 

both of type a -> a -> Bool 
• Step 2: Instance declarations 

– Specify the implementations for a particular type 
– Examples: for Int, == is integer equality, for String, == is 

string equality (but could have decided case-insensitive) 
• Step 3: Qualified types 

– Use qualified types to express that a polymorphic type must 
be an instance of your type class 

– Example: member’ :: Eq a => [a] -> a -> Bool 
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Qualified types 

member’ :: Eq a => [a] -> a -> Bool 
 

• Very roughly like a bound on the type variable 
– Caller must instantiate type variable with a type that is known 

to be an instance of the class 
– Callee may assume the type is an instance of the class (so 

can use the operations) 
– So “fewer” callers type-check and “more” callees type-check 

 
• At run-time, the right dictionary will be implicitly passed and used 

– Call-site “knows which dictionary” 
– Calls in callee “use the dictionary” 
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More Examples 
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sort        :: Ord a           => [a]   -> [a] 
reverse     ::                    [a]   -> [a] 
square      :: Num a           => a     -> a 
squarePair  :: (Num a, Num b)  => (a,b) -> (a,b) 
stringOfMin :: (Ord a, Show a) => [a]   -> String 
 

Our own classes and instances 

• The class declaration gives names and types to operations 
• An instance declaration provides the operations’ implementations  
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class MyNum a where 
   plus'  :: a -> a -> a 
   times' :: a -> a -> a 
   neg'   :: a -> a 
   zero'  :: a 
 

instance MyNum Int where 
   plus'  = (+) 
   times' = (*) 
   neg'   = \x -> -1 * x 
   zero'  = 0 
 

instance MyNum Float where 
   plus'  = (+) 
   times' = (*) 
   neg'   = \x -> -1.0 * x 
   zero'  = 0.0 

Then use them 

• Use qualified types to write algorithms over overloaded operations 
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member' :: Eq a => [a] -> a -> Bool 
member' []     v = False 
member' (x:xs) v = (==) x v || member' xs v 
 
double' :: MyNum a => a -> a 
double' v = (plus' (plus' v v) zero') 
 
sumOfSquares' :: MyNum a => [a] -> a 
sumOfSquares' [] = zero'  
sumOfSquares' (x:xs) = plus' (times' x x) (sumOfSquares' xs) 
 
i8  = double' 4 
f8  = double' 4.0 
yes = member' [3,4,5] 4 
no  = member' ["hi", "bye"] "foo" 



Compositionality of functions 

• Overloaded functions can be defined using other overloaded 
functions 
 
 
 
 
 
 
 

• quadAndFour “doesn’t know” what dictionary it was passed, 
but it knows which dictionary to pass to each of its calls to 
square 
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square :: Num a => a -> a 
square x = x * x 
 
quadAndFour :: Num a => a -> (a,Int) 
quadAndFour x = (square x * square x, square 2) 
 
eg = quadAndFour 3.0 -- (81.0, 4) 

Compositionality of Instances 

• Can use qualified instances to build compound instances in 
terms of simpler ones 
 

• Simple example from standard library: 
 
 
 
 
 
 
 
 

• A little more complicated example: see lec9.hs for 
         instance MyNum a => MyNum (Complex a) ... 
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class Eq a where 
  (==) :: a -> a -> Bool 
 

instance Eq Int where 
  (==) = intEq     -- intEq primitive equality 
 

instance (Eq a, Eq b) => Eq (a,b) where 
  (==) (u,v) (x,y) = (u == x) && (v == y) 
 

instance Eq a => Eq [a] where 
  (==) []     []     = True 
  (==) (x:xs) (y:ys) = x==y && xs == ys 
  (==) _      _      = False 

Subclasses 

• Can specify “any instance of class Foo must also be an instance 
of class Bar” 
– Example: Ord a subclass of Eq 
– Example: Fractional a subclass of Num 

• (Fractional supports real division and reciprocals) 
• Easy to define: 

 
 

• An instance must provide everything in the superclass (too) 
• Makes a qualified type “provide more” 

 
• This still isn’t OOP classes [we are defining and passing 

dictionaries separately and with static type resolution] 
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class Eq a => Ord a where -- defines Ord a 
  ... 
 

Default methods 

• A class declaration can provide default implementations 
– Including in terms of other implementations 
– Instances can override the default or not 
– Example: not-equal as not of equal 
– Example: >= as > or == 
– Example: arbitrary result like 42 

 
 
 
 
 

• This still isn’t OOP classes [we are defining and passing 
dictionaries separately and with static type resolution] 
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-- Minimal complete definition: (==) or (/=) 
class Eq a where 
    (==) :: a -> a -> Bool 
    x == y  =  not (x /= y) 
    (/=) :: a -> a -> Bool 
    x /= y  =  not (x == y) 

No, really, it’s not OOP 

• Dictionaries and method suites (vtables) are similar 
 

But… 
 

• As we have said: 
– Dictionaries “travel” separately from values 
– Method resolution is static in Haskell, based on types 

 

• Also:  
– Constrains polymorphism, does not introduce subtyping 
– Can add instance declarations for types “retroactively” 
– Dictionary selection can depend on result types: 
 fromInteger :: Num a => Integer -> a 
 

 
Lecture 9 CSE P505 Autumn 2016  Dan Grossman 17 

Topics to skip 

Very useful for practical programming but a bit off our trajectory: 
 
• deriving to get automatic instances from data definitions 

– Example: Show a tree 
 

• Support for numeric literals using the fromInteger operation 
that lets you use 0, 3, 79, etc. in any instance of Num 
 

• Interaction with type inference 
– Mostly “works fine” 
– Various details, including do not reuse operation names 

across classes in same scope 
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Now constructor classes 

• Recall: 
– Int, [Int], Complex Int, Bool, Int -> Int, etc. are 

types 
– [-], Tree, etc. are type constructors (given a type, produce 

a type) 
 

• We can define type classes for type constructors 
– Nothing really “new” here 
– Harder to read at first, but “arity” of the constructor is inferred 

from use in class declaration 
 

• See Part 3 of lec9.hs for instances and uses of this example: 

Lecture 9 CSE P505 Autumn 2016  Dan Grossman 19 

class HasMap g where 
   map' :: (a -> b) -> g a -> g b 

Now back to monad 

• Monad is a constructor class just like HasMap (!!) 
– “Required” operations are >>= and return 
– Default operations for things like >> 
– IO is “just” one “special” instance of monad 
– There are many useful instances of monad 
– Any instance of monad can use do-notation since it’s just 

sugar for calls to >>=  
 

• See Parts 4, 5, and 6 of lec9.hs to blow your mind  
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Summary of all that (!)  

• “Part 4” 
– Monad is a constructor typeclass  
– Instance Monad Maybe’gives intuitive definitions to >>= 

and return 
– do-notation for “maybe” can be much less painful than life 

without it 
• “Part 5” 

– Naturally, can write code generic over “which monad instance” 
– So can reuse combinators like  
    sequence :: Monad m => [m a]-> m [a] 

• “Part 6” 
– State monad definition is purely functional but looks-and-feels 

like imperative programming when using it 
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Other cheats 

• So type classes seem to work pretty well 
– Haskell has, over time, committed to them ever-more fully 

 

• Without them, you can: 
– Do explicit dictionary passing 
– “Cheat” in various ways: 

• SML: special support for Eq and nothing else 
– Oh also +, *, etc. for int and float 

• OCaml: cheat on key functions like hash and = being 
allegedly fully polymorphic but can fail at runtime and/or 
violate abstractions 
 

• C++: OOP or code duplication, neither of which is the same?? 
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