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Haskell 

• Haskell is a programming language that is: 

– Similar to ML: general-purpose, strongly typed, higher-order, 

functional, supports type inference, … 

– Different from ML: purely functional core, lazy evaluation, 

monadic IO, type classes, … 

– These differences are why we will use it for Homework 5 and 

what we will focus on 

 

• Designed by committee in 1980s and 1990s to unify research 

efforts in lazy languages.  Continues to evolve. 

– Haskell 1.0 in 1990, Haskell ‘98, Haskell’ ongoing.  

– “A History of Haskell: Being Lazy with Class” HOPL 3 
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These “graphs” aren’t mine and aren’t based on real data, but 

they’re fun [and make a meta-point ?] 
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Committee languages 

1yr 5yr 10yr 15yr 

1,000,000 

1 

100 

10,000 

The even slower death 

G
e
e
k
s
 

P
ra

c
ti
ti
o
n
e
rs

 



C++, Java, Perl, Ruby 
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Haskell 
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Function types mean more 

Thanks to purity, a function type is a stronger spec in Haskell: 

 

• If f :: A -> B, then for every e :: A, we know f e 

– Equals some v :: B, or 

– Does not terminate [hand-wave exceptions, …] 

 

• If e1 = e2, then f e1 = f e2 

– A “bigger deal than it looks” – “no side effects or implicit 

state” 

– let x = f e in (x,x)  

 is indistinguishable from (f e, f e) 
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Ah, xkcd 

 

 

 

 

 

http://xkcd.com/1312/ 
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Syntax differences from OCaml 

• x :: Int  means “x has type Int” 

• y : ys   means “cons y onto list ys” 

• \x -> x + 1  “\” means lambda 

• Required upper/lowercase: 

– Expression identifiers are lowercase 

– Type constructors (names) are uppercase 

– Type variables are lower case (and no ’) 

• Comments:  

– -- to end of line 

– {- … -} 

• At top-level no “let” for bindings 

• In other scopes, let or where with latter common 

• Whitespace relevant (no | on case branches, …) 
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List comprehensions 

• “Not a big deal” but convenient syntax for maps, filters, and zips 

– Could “desugar” 
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myData = [1,2,3,4,5,6,7] 

twiceData = [2 * x | x <- myData] 

-- [2,4,6,8,10,12,14] 

twiceEvenData = [2 * x| x <- myData, x `mod` 2 == 0] 

-- [4,8,12] 

crossProductDataEvens =  

   [(i,j)| i <- myData, j <- myData, 

           (i+j) `mod` 2 == 0] 

-- [(1,1),(1,3),(1,5),(1,7),(2,2),(2,4),…] 

 

 



Laziness 

• Haskell is a lazy language 

 

• Functions (and data constructors) do not evaluate their 

arguments until they need them 

– Then “store the result” to avoid re-execution 

– By default this happens “everywhere” 

 

• Theoretical “best approach” in pure language 

– Humans struggle to determine “when evaluation happens” 

– But thanks to purity it doesn’t matter (!) 

– And laziness is powerful for “infinite data structures” 
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If OCaml vs. Haskell 
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if’ :: Bool -> a -> a -> a 

if’ b e1 e2 = case b of True -> e1 | False -> e2 

 

 

 

(* WRONG: always evaluates e1 and e2 *) 

let if’ b e1 e2 = match b with true -> e1  

                             | false -> e2 

(* RIGHT but no memoization (fine here) and caller     

    must thunk *) 

let if’ b e1 e2 = match b with true -> e1 () 

                            | false -> e2 () 

(* using Lazy library (but avoiding special syntax) 

and caller must thunk and use Lazy.from_fun *) 

let if’ b e1 e2 = match b with true -> Lazy.force e1 

                            | false -> Lazy.force e2 

 



Implmenting OCaml lazy 

• Lazy module no big deal: 

 

 

 

 

 

 

 

 

 

• The point is this is the semantics in Haskell for every function 

call and data argument (forced only when its known that “result 

of program” needs it) 
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type ’a t1 = Done of ’a | NotDone of unit -> ’a  

type ’a t = ’a t1 ref (* export abstractly *) 

let from_fun f = ref (NotDone f) 

let force p = match !p with  

   Done v -> v 

   NotDone f -> p := Done (f());  

                               force p 



Examples 
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loop x = loop x 

xs = 3+2 : loop 7 : 1+4 : [] 

x1 = head xs 

x2 = (head (tail xs)) 

x3 = (head (tail (tail xs))) 

three = length xs 

prefix_sums acc ys =  

   case ys of  

    [] -> []  

    y : ys -> (acc+y) : prefix_sums (acc+y) ys 

five = head (prefix_sums 0 xs) 

main :: IO a 

   print x1; print x3; print three; print five  

   -- ; print x2 

  



Lazy programming 

• Do not worry about creating (thunks that create) large, even 

infinite data structures 

– Then use only what you need 

 

• Example: streams 

 

 

 

 

 

• Example: search problems [not shown] 

– “Natural” separation between “generator” of [potentially-

infinite] moves and “consumer” (search strategy) 
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ones = 1 : ones 

nats = prefix_sums 0 ones 

a_few = tail (take 7 nats) 

 



Back to purity 

• Pure functions are easy to test – “no side effects” 

 

• Example: If xs = reverse(reverse xs), then you can 

replace one with the other with high confidence 

 

• And testing this property cannot depend on any state because if 
reverse is pure (and everything in “core Haskell” is pure), then 

it cannot depend on that state 
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Purity is beautiful 

• Like in OCaml: 

higher-order functions, algebraic data types, parametric 

polymorphism, ... 

 

• Plus equational reasoning due to “no side effects” and “only 

needed computations evaluated” 

– If x = y, then f x = f y 

– Order of evaluation is irrelevant, so don’t have to “think 

about it being lazy” except for termination/performance 
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… and the beast 

• But to be useful as well as beautiful, a language must manage 

the “Awkward Squad”: 

– Input/Output 

– Imperative update 

– Error recovery (e.g., timing out, catching divide by zero, etc.) 

– Foreign-language interfaces  

– Concurrency 

 

 

The whole point of a running a program is to affect the real 

world, an “update in place” of something 
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Direct approach 

• Could allow side effects “the usual way” and discourage them 

– Example: putchar :: Char -> () 

– And similar for references, exceptions, ffi, concurrency 
 

• In practice, this works fine in an eager language (cf. OCaml) but 

is unworkable in a lazy language 

– Makes evaluation order relevant again 

– And laziness is hard to reason about 

– And compiler wants freedom to optimize away laziness when 

it can tell “it won’t matter” 
 

• This also doesn’t work at the semantics level if we define our 

language to have “undefined evaluation order” rather than lazy 

– As Haskell does…  
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Examples 

Evaluation order of function arguments and data constructor 

arguments does not matter (and isn’t defined) when functions are 

pure. 
 

Example:  

((\x y. y) (putchar ‘w’) [putchar ‘x’, putchar ‘y’] 
 

With lazy implementation output still depends on how result is used 
 

By the way: 

– What about exceptions?  

– Non-deterministic evaluation order “so any exception might 

happen” works okay in practice 

– Example: y = [3 `div` 0, head (tail [4])] 
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Tackling the “Awkward Squad” 

• Laziness and side effects are incompatible 
 

• Side effects are important! 
 

• For a long time, this tension was embarrassing to the lazy 

functional programming community  

– [will skip earlier solutions that “worked okay for I/O in terms 

of lazy streams”] 

• In early 90’s, a surprising solution – the monad -- emerged from 

an unlikely source (category theory) 
 

• Haskell’s IO monad provides a way of tackling the awkward 

squad: I/O, imperative state, exceptions, foreign functions, & 

concurrency.  
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Monadic I/O: The Key Idea 

• IO is a type constructor 

– IO t is a type where t is a type 

 

• Think of IO t as describing an “action” or “computation” that 

when performed produces a result of type t 

 

• Now manipulate values of type IO t in your pure lazy language 

– Pass them around, combine them, etc.  

• With helpful functions and sugar  

• But cannot “do an IO action” inside a program 

– Only main :: IO a, can be “performed”  

• By “running the program” 
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A helpful picture 

• IO is an abstract type constructor, but think of it as: 

 

 

– “An action” that, when performed, takes “a world” and 

returns “a t and a [new] world” 

 

 

 

 

 

 

• Thanks to abstraction, there is no way to “get a world”, so you 

can’t “store or copy a world” (woah!!) 
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type IO t = World -> (t, World) 

 

IO t 

result :: t 



Actions are first class 

 

• Evaluating an IO t produces an action 

– Evaluation has no side effects 

– Does not perform-the-action, which [probably] has side 

effects 
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Simple I/O 
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getChar 

Char 

putChar 

() Char 

getChar :: IO Char 

putChar :: Char -> IO () 

 

main :: IO () 

main = putChar ’x’ 

Main program is an 
action of type IO () 

(and it is performed) 



Connection actions 

• To read a character and then write it back out, we need to 

connect two actions 

 

 

 

 

 

 

• This is done with the bind combinator… 
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putChar 

() 

getChar 

Char 



Bind 

• “Provided” (as are getChar and putChar are) 

 

 

• Semantics is exactly “the compound sequenced action” you 

would expect from the type 
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(>>=) :: IO a -> (a -> IO b) -> IO b 

 

 

putChar 

() 

Char 

getChar 

echo :: IO () 

echo = getChar >>= putChar 

 

 

 



More on >>= 

• Called bind because it binds the result of the left-hand action in 

the action on the right 

 

• The result of calling >>= is an action that, when performed: 

– Performs the action on the left, producing result r1 

– Applies the function on the right to r1 to get another action 

– Applies that action, to get another result r2 

– Returns r2 
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e1 >>= \x -> e2 

 

 

 e2 

r2 

e1 
x r1 



Printing a character twice 

• Parentheses are optional for usual lambda-concrete-syntax reasons 
 

• “Do notation” is syntactic sugar for exactly the same thing 

– Designed to “look imperative”; will extend it soon 

– It’s just sugar for creating actions with bind, not performing them! 
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echoDup :: IO () 

echoDup = getChar   >>= (\c -> 

          putChar c >>= (\() -> 

          putChar c)) 

echoDup :: IO () 

echo = do { c  <- getChar; 

            () <- putChar c; 

            putChar c; } 



More sugar / helper functions 

• The “then” combinator sequences actions when there is no 

value to pass forward 
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(>>) :: IO a -> IO b -> IO b 

m >> n = m >>= (\_ -> n) 

 
echoDup :: IO () 

echoDup = getChar   >>= (\c -> 

          putChar c >> 

          putChar c) 

echoDup :: IO () 

echoDup = do { c  <- getChar; 

               putChar c; 

               putChar c; } 



Getting Two Characters 

• (c1,c2) :: (Char, Char) but we need the ???? to be 

replaced with something of type IO (Char, Char) 

 

• Need a way to convert “plain” values into IO actions 

– Should be fine: “performing the action in a world” is just 

“evaluate the expression” [ignoring the world] 
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getTwoChars :: IO (Char,Char) 

getTwoChars = getChar >>= (\c1 -> 

              getChar >>= (\c2 -> 

              ???? 



The return combinator 

• [I won’t try to justify the name “return” – it’s not what you think 

even though it sorta kinda sounds right] 

• The “action” return v just produces result v (no side effects) 
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return :: a -> IO a 

return 

getTwoChars :: IO (Char,Char) 

getTwoChars = getChar >>= (\c1 -> 

              getChar >>= (\c2 -> 

              return (c1,c2) 



Yet more sugar 

• Can omit braces for do-notation 

• Can use indentation instead of semicolons 

• … some more 

 

• But the simple stuff is “just”: 

– x <- e1; e2 for e1 >>= \x. e2 

– e1; e2 for e1 >> e2 

– return e [not necessarily just at end because it’s not the 

“return” you are used to] 
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Bigger Example 

• [Of course in practice, you would provide this as a faster primitive] 

• Key points: 

– Recursion as usual  

– “Mixing in” regular code that produces actions 
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getLine :: IO [Char] 

getLine = do { c <- getChar ; 

               if c == '\n' then  

                    return [] 

               else  

                    do { cs <- getLine; 

                         return (c:cs) }} 

 



A helpful picture [again] 

• IO is an abstract type constructor, but think of it as: 

 

 

– “An action” that, when performed, takes “a world” and 
returns “a t and a [new] world” 

 

 

 

 

 

 

• Thanks to abstraction, there is no way to “get a world”, so you 

can’t “store or copy a world” (woah!!) 

– Enforces “single path” through a sequence of actions 
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type IO t = World -> (t, World) 

 

IO t 

result :: t 



Control Structures 

• More examples showing how “first-class actions” can be 

composed to build your own control structures 

– Think: treating code [actions] as data and building up 

compound data that can later be ‘run’  

 

 

 

 

 

 

 

– Example use: 
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forever :: IO () -> IO () 

forever a = a >> forever a 
 

repeatN :: Int -> IO () -> IO () 

repeatN n a = if n=0 

              then return () 

              else a >> repeatN (n-1) a 

 

repeatN 5 (putChar ’#’) 

 



More first-class fun 

• Showing general idea of “first-class actions” lets the programmer 

define structures of [arbitrary] actions 

– No need to bake more than >>= and return into the language 

 

 

 

 

 

 

 

 

– Example use: 
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sequence :: [IO a] -> IO [a] 

sequence xs =  

   case xs of 

     [] -> return [] 

     y:ys= do { r  <- y; 

                 rs <- sequence ys; 

                 return (r:rs) } 

sequence [getLine, putChar ’>’ >> return [], getLine]  

 



Growing the IO monad 

• The IO monad is “built-in” to Haskell via main :: IO() 

• It is “one-stop shopping” for “all the stuff that needs a well-

defined sequence when performed” 

– a.k.a. “the sin bin” combined with “the outside world” 

• Just a flavor: 
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openFile :: FilePath -> IOMode -> IO Handle  

hPutStr  :: Handle -> String -> IO () 

hGetLine :: Handle -> IO String 

hClose   :: Handle -> IO ()  
 

data IORef a   -- Abstract type 

newIORef   :: a -> IO (IORef a) 

readIORef  :: IORef a -> IO a 

writeIORef :: IORef a -> a -> IO () 



So we have an imperative language 

So now you could write this 
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count :: (a -> Bool) -> [a] -> IO Int 

count f xs = do { r <- newIORef 0; help r xs } 

  where 

     help r xs =  

       case xs of  

         [] -> readIORef r 

       | x:xs -> if f x 

                 then do { old <- readIORef r; 

                           writeIORef r (old+1); 

                           help r xs } 

                 else help r xs           



But… 

• Just because you can write imperative code doesn’t mean you 

should 
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count :: (a -> Bool) -> [a] -> Int 

count f xs =  

    case xs of  

         [] -> 0 

       | x:xs -> (if f x then 1 else 0) 

                    + count f xs 

-- previous slide’s count  

--    :: (a -> Bool) -> [a] -> IO Int 

-- can get an IO Int with  

--   return (count f xs) 



The Roach Motel  

• “Once you get in to the IO monad, you can’t get out” 

– Bind lets you use a value “in there” but “leaves you in there” 

– Return “gets anything you want in there” 

 

• So you find yourself “wanting to cheat”, looking for a 
magic_escape :: IO a -> a 

 

• The presence of such a function would “break everything” 

because it would have to “perform the action” [no other way it 
could find an a, but then we have side effects in allegedly pure 

code, which was the whole thing we were trying to avoid] 
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Examples with this problem 

• Suppose you want to read some configuration options from a file 

but treat the values as “pure constants” 

 

 

 

 

 

• This doesn’t and shouldn’t type-check:                              
readFile :: String->IO String 

• Leaves only two options: 

– Put all code depending on file contents in IO monad 

– Cheat 
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configFileContents :: [String]  

configFileContents = lines (readFile "config") --NO!  

useOptimization :: Bool                 

useOptimization = elem "optimize" configFileContents 



The Cheat Exists (!) 

• They call it unsafePerformIO not magic_escape 

    magic_escape :: IO a -> a 

 

• Any code that uses it has an obligation to “know” that “it doesn’t 

matter” 

– When we perform the IO action 

– How many times we perform the IO action 

– Relative order of performing this action vs. other actions 

[Notice: Reading a read-only, accessible file meets this 

obligation] 

 

• The operator has a deliberately long to discourage its use 
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BTW, It really is a cheat 

• You can use unsafePerformIO to circumvent the type system 

arbitrarily 

– Exact same issue arises in OCaml without “the value 

restriction” 

– OCaml has to avoid this; Haskell can say “unsafePerformIO 

is unsafe” 

Lecture 8 CSE P505 Autumn 2016  Dan Grossman 47 

r :: forall a. IORef a   -- This is bad!  

r =  unsafePerformIO (newIORef (error "urk"))   

 

cast :: b -> c 

cast x = unsafePerformIO (do {writeIORef r x; 

                              readIORef r     }) 



Implementation 

• The compiler front-end and optimizer doesn’t know that the IO 

monad is special 

– It can be restrained by using an unkown “World” type that is 

“threaded through” 

• Then the back-end code generator can convert the “World”-y 

code to in-place imperative operations 
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type IO t = World -> (t, World) -- in compiler front 
 

return :: a -> IO a  

return a = \w -> (a,w)  
 

(>>=) :: IO a -> (a -> IO b) -> IO b  

(>>=) m k = \w -> case m w of (r,w’) -> k r w’  



Summary 

• A Haskell program is a single IO action called main.  Inside the 

IO monad, evaluation order is defined 
 

• Big IO actions are built by gluing together smaller ones with bind 
(>>=) and by converting pure code into actions with return 
 

• IO actions are first-class 

– They can be passed to functions, returned from functions, 

and stored in data structures 

– So it is easy to define new “glue” combinators 
 

• The IO Monad allows Haskell to be pure while efficiently 

supporting side effects 
 

• The type system separates the pure from the effectful code 
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A Monadic “Outer Layer” 

• In languages like ML or Java, the fact that the language is in the 

IO monad is baked into the language 

– There is no need to mark anything in the type system 

because it is everywhere.   

 

• In Haskell, the programmer can choose when to live in the IO 

monad and when to live in the realm of pure functional 

programming 

 

• So it is not Haskell that lacks imperative features, but rather the 

other languages that lack the ability to have a statically 

distinguishable pure subset 
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Now from here [time permitting] 

• There are lots of other monads 

– All monads have >>= and return 

– They can differ on “what else they have” 

– Do-notation can be used with “any monad” 

 

• You can write code that is “generic over” “which monad” 

– Ridiculously powerful idiom for “threading things” without 

syntactic clutter (cf. when I showed you “state monad” in 

OCaml) 

 

• Monad is a “typeclass”  

– Haskell supports “other [user-defined] typeclasses too” 

– Integrates overloading with polymorphic lambda calculus 
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