
CSEP505: Programming Languages

Lecture 8: Haskell, Laziness, IO Monad

Dan Grossman

Autumn 2016

Acknowledgments

• Slide-and-code content liberally appropriated with permission

from Kathleen Fisher, Tufts University

• She in turn acknowledges Simon Peyton Jones, Microsoft

Research, Cambridge “for many of these slides”

• And then I probably introduced errors and weaknesses as I

changed them…

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 2

References

• “Real World Haskell”,

– Particularly Chapters 0 & 7

– http://book.realworldhaskell.org/

• “Tackling the Awkward Squad”

– Particularly Sections 1 & 2

– http://research.microsoft.com/~simonpj/papers/marktoberdor

f/mark.pdf

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 3

Haskell

• Haskell is a programming language that is:

– Similar to ML: general-purpose, strongly typed, higher-order,

functional, supports type inference, …

– Different from ML: purely functional core, lazy evaluation,

monadic IO, type classes, …

– These differences are why we will use it for Homework 5 and

what we will focus on

• Designed by committee in 1980s and 1990s to unify research

efforts in lazy languages. Continues to evolve.

– Haskell 1.0 in 1990, Haskell ‘98, Haskell’ ongoing.

– “A History of Haskell: Being Lazy with Class” HOPL 3

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 4

http://haskell.org/definition/haskell-report-1.0.ps.gz
http://www.haskell.org/haskellwiki/Language_and_library_specification#The_Haskell_98_report
http://www.haskell.org/haskellwiki/Future_of_Haskell
http://doi.acm.org/10.1145/1238844.1238856
http://doi.acm.org/10.1145/1238844.1238856
http://doi.acm.org/10.1145/1238844.1238856

These “graphs” aren’t mine and aren’t based on real data, but

they’re fun [and make a meta-point ?]

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 5

Successful Research Languages

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The slow death

G
e
e
k
s

P
ra

c
ti
ti
o
n
e
rs

Committee languages

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The even slower death

G
e
e
k
s

P
ra

c
ti
ti
o
n
e
rs

C++, Java, Perl, Ruby

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000
The complete

absence of death

G
e
e
k
s

P
ra

c
ti
ti
o
n
e
rs

Threshold of immortality

Haskell

1,000,000

1

100

10,000

The second life?

1990 1995 2000 2005 2010

G
e
e
k
s

P
ra

c
ti
ti
o
n
e
rs

Function types mean more

Thanks to purity, a function type is a stronger spec in Haskell:

• If f :: A -> B, then for every e :: A, we know f e

– Equals some v :: B, or

– Does not terminate [hand-wave exceptions, …]

• If e1 = e2, then f e1 = f e2

– A “bigger deal than it looks” – “no side effects or implicit

state”

– let x = f e in (x,x)

 is indistinguishable from (f e, f e)

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 10

Ah, xkcd

http://xkcd.com/1312/

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 11

Syntax differences from OCaml

• x :: Int means “x has type Int”

• y : ys means “cons y onto list ys”

• \x -> x + 1 “\” means lambda

• Required upper/lowercase:

– Expression identifiers are lowercase

– Type constructors (names) are uppercase

– Type variables are lower case (and no ’)

• Comments:

– -- to end of line

– {- … -}

• At top-level no “let” for bindings

• In other scopes, let or where with latter common

• Whitespace relevant (no | on case branches, …)

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 12

List comprehensions

• “Not a big deal” but convenient syntax for maps, filters, and zips

– Could “desugar”

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 13

myData = [1,2,3,4,5,6,7]

twiceData = [2 * x | x <- myData]

-- [2,4,6,8,10,12,14]

twiceEvenData = [2 * x| x <- myData, x `mod` 2 == 0]

-- [4,8,12]

crossProductDataEvens =

 [(i,j)| i <- myData, j <- myData,

 (i+j) `mod` 2 == 0]

-- [(1,1),(1,3),(1,5),(1,7),(2,2),(2,4),…]

Laziness

• Haskell is a lazy language

• Functions (and data constructors) do not evaluate their

arguments until they need them

– Then “store the result” to avoid re-execution

– By default this happens “everywhere”

• Theoretical “best approach” in pure language

– Humans struggle to determine “when evaluation happens”

– But thanks to purity it doesn’t matter (!)

– And laziness is powerful for “infinite data structures”

 Lecture 8 CSE P505 Autumn 2016 Dan Grossman 14

If OCaml vs. Haskell

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 15

if’ :: Bool -> a -> a -> a

if’ b e1 e2 = case b of True -> e1 | False -> e2

(* WRONG: always evaluates e1 and e2 *)

let if’ b e1 e2 = match b with true -> e1

 | false -> e2

(* RIGHT but no memoization (fine here) and caller

 must thunk *)

let if’ b e1 e2 = match b with true -> e1 ()

 | false -> e2 ()

(* using Lazy library (but avoiding special syntax)

and caller must thunk and use Lazy.from_fun *)

let if’ b e1 e2 = match b with true -> Lazy.force e1

 | false -> Lazy.force e2

Implmenting OCaml lazy

• Lazy module no big deal:

• The point is this is the semantics in Haskell for every function

call and data argument (forced only when its known that “result

of program” needs it)

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 16

type ’a t1 = Done of ’a | NotDone of unit -> ’a

type ’a t = ’a t1 ref (* export abstractly *)

let from_fun f = ref (NotDone f)

let force p = match !p with

 Done v -> v

 NotDone f -> p := Done (f());

 force p

Examples

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 17

loop x = loop x

xs = 3+2 : loop 7 : 1+4 : []

x1 = head xs

x2 = (head (tail xs))

x3 = (head (tail (tail xs)))

three = length xs

prefix_sums acc ys =

 case ys of

 [] -> []

 y : ys -> (acc+y) : prefix_sums (acc+y) ys

five = head (prefix_sums 0 xs)

main :: IO a

 print x1; print x3; print three; print five

 -- ; print x2

Lazy programming

• Do not worry about creating (thunks that create) large, even

infinite data structures

– Then use only what you need

• Example: streams

• Example: search problems [not shown]

– “Natural” separation between “generator” of [potentially-

infinite] moves and “consumer” (search strategy)

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 18

ones = 1 : ones

nats = prefix_sums 0 ones

a_few = tail (take 7 nats)

Back to purity

• Pure functions are easy to test – “no side effects”

• Example: If xs = reverse(reverse xs), then you can

replace one with the other with high confidence

• And testing this property cannot depend on any state because if
reverse is pure (and everything in “core Haskell” is pure), then

it cannot depend on that state

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 19

Purity is beautiful

• Like in OCaml:

higher-order functions, algebraic data types, parametric

polymorphism, ...

• Plus equational reasoning due to “no side effects” and “only

needed computations evaluated”

– If x = y, then f x = f y

– Order of evaluation is irrelevant, so don’t have to “think

about it being lazy” except for termination/performance

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 20

… and the beast

• But to be useful as well as beautiful, a language must manage

the “Awkward Squad”:

– Input/Output

– Imperative update

– Error recovery (e.g., timing out, catching divide by zero, etc.)

– Foreign-language interfaces

– Concurrency

The whole point of a running a program is to affect the real

world, an “update in place” of something

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 21

Direct approach

• Could allow side effects “the usual way” and discourage them

– Example: putchar :: Char -> ()

– And similar for references, exceptions, ffi, concurrency

• In practice, this works fine in an eager language (cf. OCaml) but

is unworkable in a lazy language

– Makes evaluation order relevant again

– And laziness is hard to reason about

– And compiler wants freedom to optimize away laziness when

it can tell “it won’t matter”

• This also doesn’t work at the semantics level if we define our

language to have “undefined evaluation order” rather than lazy

– As Haskell does…

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 22

Examples

Evaluation order of function arguments and data constructor

arguments does not matter (and isn’t defined) when functions are

pure.

Example:

((\x y. y) (putchar ‘w’) [putchar ‘x’, putchar ‘y’]

With lazy implementation output still depends on how result is used

By the way:

– What about exceptions?

– Non-deterministic evaluation order “so any exception might

happen” works okay in practice

– Example: y = [3 `div` 0, head (tail [4])]

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 23

Tackling the “Awkward Squad”

• Laziness and side effects are incompatible

• Side effects are important!

• For a long time, this tension was embarrassing to the lazy

functional programming community

– [will skip earlier solutions that “worked okay for I/O in terms

of lazy streams”]

• In early 90’s, a surprising solution – the monad -- emerged from

an unlikely source (category theory)

• Haskell’s IO monad provides a way of tackling the awkward

squad: I/O, imperative state, exceptions, foreign functions, &

concurrency.

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 24

Monadic I/O: The Key Idea

• IO is a type constructor

– IO t is a type where t is a type

• Think of IO t as describing an “action” or “computation” that

when performed produces a result of type t

• Now manipulate values of type IO t in your pure lazy language

– Pass them around, combine them, etc.

• With helpful functions and sugar

• But cannot “do an IO action” inside a program

– Only main :: IO a, can be “performed”

• By “running the program”

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 25

A helpful picture

• IO is an abstract type constructor, but think of it as:

– “An action” that, when performed, takes “a world” and

returns “a t and a [new] world”

• Thanks to abstraction, there is no way to “get a world”, so you

can’t “store or copy a world” (woah!!)

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 26

type IO t = World -> (t, World)

IO t

result :: t

Actions are first class

• Evaluating an IO t produces an action

– Evaluation has no side effects

– Does not perform-the-action, which [probably] has side

effects

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 27

Simple I/O

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 28

getChar

Char

putChar

() Char

getChar :: IO Char

putChar :: Char -> IO ()

main :: IO ()

main = putChar ’x’

Main program is an
action of type IO ()

(and it is performed)

Connection actions

• To read a character and then write it back out, we need to

connect two actions

• This is done with the bind combinator…

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 29

putChar

()

getChar

Char

Bind

• “Provided” (as are getChar and putChar are)

• Semantics is exactly “the compound sequenced action” you

would expect from the type

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 30

(>>=) :: IO a -> (a -> IO b) -> IO b

putChar

()

Char

getChar

echo :: IO ()

echo = getChar >>= putChar

More on >>=

• Called bind because it binds the result of the left-hand action in

the action on the right

• The result of calling >>= is an action that, when performed:

– Performs the action on the left, producing result r1

– Applies the function on the right to r1 to get another action

– Applies that action, to get another result r2

– Returns r2

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 31

e1 >>= \x -> e2

 e2

r2

e1
x r1

Printing a character twice

• Parentheses are optional for usual lambda-concrete-syntax reasons

• “Do notation” is syntactic sugar for exactly the same thing

– Designed to “look imperative”; will extend it soon

– It’s just sugar for creating actions with bind, not performing them!

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 32

echoDup :: IO ()

echoDup = getChar >>= (\c ->

 putChar c >>= (\() ->

 putChar c))

echoDup :: IO ()

echo = do { c <- getChar;

 () <- putChar c;

 putChar c; }

More sugar / helper functions

• The “then” combinator sequences actions when there is no

value to pass forward

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 33

(>>) :: IO a -> IO b -> IO b

m >> n = m >>= (_ -> n)

echoDup :: IO ()

echoDup = getChar >>= (\c ->

 putChar c >>

 putChar c)

echoDup :: IO ()

echoDup = do { c <- getChar;

 putChar c;

 putChar c; }

Getting Two Characters

• (c1,c2) :: (Char, Char) but we need the ???? to be

replaced with something of type IO (Char, Char)

• Need a way to convert “plain” values into IO actions

– Should be fine: “performing the action in a world” is just

“evaluate the expression” [ignoring the world]

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 34

getTwoChars :: IO (Char,Char)

getTwoChars = getChar >>= (\c1 ->

 getChar >>= (\c2 ->

 ????

The return combinator

• [I won’t try to justify the name “return” – it’s not what you think

even though it sorta kinda sounds right]

• The “action” return v just produces result v (no side effects)

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 35

return :: a -> IO a

return

getTwoChars :: IO (Char,Char)

getTwoChars = getChar >>= (\c1 ->

 getChar >>= (\c2 ->

 return (c1,c2)

Yet more sugar

• Can omit braces for do-notation

• Can use indentation instead of semicolons

• … some more

• But the simple stuff is “just”:

– x <- e1; e2 for e1 >>= \x. e2

– e1; e2 for e1 >> e2

– return e [not necessarily just at end because it’s not the

“return” you are used to]

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 36

Bigger Example

• [Of course in practice, you would provide this as a faster primitive]

• Key points:

– Recursion as usual 

– “Mixing in” regular code that produces actions

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 37

getLine :: IO [Char]

getLine = do { c <- getChar ;

 if c == '\n' then

 return []

 else

 do { cs <- getLine;

 return (c:cs) }}

A helpful picture [again]

• IO is an abstract type constructor, but think of it as:

– “An action” that, when performed, takes “a world” and
returns “a t and a [new] world”

• Thanks to abstraction, there is no way to “get a world”, so you

can’t “store or copy a world” (woah!!)

– Enforces “single path” through a sequence of actions
Lecture 8 CSE P505 Autumn 2016 Dan Grossman 38

type IO t = World -> (t, World)

IO t

result :: t

Control Structures

• More examples showing how “first-class actions” can be

composed to build your own control structures

– Think: treating code [actions] as data and building up

compound data that can later be ‘run’

– Example use:

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 39

forever :: IO () -> IO ()

forever a = a >> forever a

repeatN :: Int -> IO () -> IO ()

repeatN n a = if n=0

 then return ()

 else a >> repeatN (n-1) a

repeatN 5 (putChar ’#’)

More first-class fun

• Showing general idea of “first-class actions” lets the programmer

define structures of [arbitrary] actions

– No need to bake more than >>= and return into the language

– Example use:

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 40

sequence :: [IO a] -> IO [a]

sequence xs =

 case xs of

 [] -> return []

 y:ys= do { r <- y;

 rs <- sequence ys;

 return (r:rs) }

sequence [getLine, putChar ’>’ >> return [], getLine]

Growing the IO monad

• The IO monad is “built-in” to Haskell via main :: IO()

• It is “one-stop shopping” for “all the stuff that needs a well-

defined sequence when performed”

– a.k.a. “the sin bin” combined with “the outside world”

• Just a flavor:

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 41

openFile :: FilePath -> IOMode -> IO Handle

hPutStr :: Handle -> String -> IO ()

hGetLine :: Handle -> IO String

hClose :: Handle -> IO ()

data IORef a -- Abstract type

newIORef :: a -> IO (IORef a)

readIORef :: IORef a -> IO a

writeIORef :: IORef a -> a -> IO ()

So we have an imperative language

So now you could write this

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 42

count :: (a -> Bool) -> [a] -> IO Int

count f xs = do { r <- newIORef 0; help r xs }

 where

 help r xs =

 case xs of

 [] -> readIORef r

 | x:xs -> if f x

 then do { old <- readIORef r;

 writeIORef r (old+1);

 help r xs }

 else help r xs

But…

• Just because you can write imperative code doesn’t mean you

should

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 43

count :: (a -> Bool) -> [a] -> Int

count f xs =

 case xs of

 [] -> 0

 | x:xs -> (if f x then 1 else 0)

 + count f xs

-- previous slide’s count

-- :: (a -> Bool) -> [a] -> IO Int

-- can get an IO Int with

-- return (count f xs)

The Roach Motel 

• “Once you get in to the IO monad, you can’t get out”

– Bind lets you use a value “in there” but “leaves you in there”

– Return “gets anything you want in there”

• So you find yourself “wanting to cheat”, looking for a
magic_escape :: IO a -> a

• The presence of such a function would “break everything”

because it would have to “perform the action” [no other way it
could find an a, but then we have side effects in allegedly pure

code, which was the whole thing we were trying to avoid]

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 44

Examples with this problem

• Suppose you want to read some configuration options from a file

but treat the values as “pure constants”

• This doesn’t and shouldn’t type-check:
readFile :: String->IO String

• Leaves only two options:

– Put all code depending on file contents in IO monad

– Cheat

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 45

configFileContents :: [String]

configFileContents = lines (readFile "config") --NO!

useOptimization :: Bool

useOptimization = elem "optimize" configFileContents

The Cheat Exists (!)

• They call it unsafePerformIO not magic_escape

 magic_escape :: IO a -> a

• Any code that uses it has an obligation to “know” that “it doesn’t

matter”

– When we perform the IO action

– How many times we perform the IO action

– Relative order of performing this action vs. other actions

[Notice: Reading a read-only, accessible file meets this

obligation]

• The operator has a deliberately long to discourage its use

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 46

BTW, It really is a cheat

• You can use unsafePerformIO to circumvent the type system

arbitrarily

– Exact same issue arises in OCaml without “the value

restriction”

– OCaml has to avoid this; Haskell can say “unsafePerformIO

is unsafe”

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 47

r :: forall a. IORef a -- This is bad!

r = unsafePerformIO (newIORef (error "urk"))

cast :: b -> c

cast x = unsafePerformIO (do {writeIORef r x;

 readIORef r })

Implementation

• The compiler front-end and optimizer doesn’t know that the IO

monad is special

– It can be restrained by using an unkown “World” type that is

“threaded through”

• Then the back-end code generator can convert the “World”-y

code to in-place imperative operations

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 48

type IO t = World -> (t, World) -- in compiler front

return :: a -> IO a

return a = \w -> (a,w)

(>>=) :: IO a -> (a -> IO b) -> IO b

(>>=) m k = \w -> case m w of (r,w’) -> k r w’

Summary

• A Haskell program is a single IO action called main. Inside the

IO monad, evaluation order is defined

• Big IO actions are built by gluing together smaller ones with bind
(>>=) and by converting pure code into actions with return

• IO actions are first-class

– They can be passed to functions, returned from functions,

and stored in data structures

– So it is easy to define new “glue” combinators

• The IO Monad allows Haskell to be pure while efficiently

supporting side effects

• The type system separates the pure from the effectful code

 Lecture 8 CSE P505 Autumn 2016 Dan Grossman 49

A Monadic “Outer Layer”

• In languages like ML or Java, the fact that the language is in the

IO monad is baked into the language

– There is no need to mark anything in the type system

because it is everywhere.

• In Haskell, the programmer can choose when to live in the IO

monad and when to live in the realm of pure functional

programming

• So it is not Haskell that lacks imperative features, but rather the

other languages that lack the ability to have a statically

distinguishable pure subset

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 50

Now from here [time permitting]

• There are lots of other monads

– All monads have >>= and return

– They can differ on “what else they have”

– Do-notation can be used with “any monad”

• You can write code that is “generic over” “which monad”

– Ridiculously powerful idiom for “threading things” without

syntactic clutter (cf. when I showed you “state monad” in

OCaml)

• Monad is a “typeclass”

– Haskell supports “other [user-defined] typeclasses too”

– Integrates overloading with polymorphic lambda calculus

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 51

