CSEP505: Programming Languages
Lecture 8: Haskell, Laziness, IO Monad

Dan Grossman
Autumn 2016

Acknowledgments

« Slide-and-code content liberally appropriated with permission
from Kathleen Fisher, Tufts University

« She in turn acknowledges Simon Peyton Jones, Microsoft
Research, Cambridge “for many of these slides”

« And then | probably introduced errors and weaknesses as |
changed them...

Lecture 8 CSE P505 Autumn 2016 Dan Grossman

References

 “Real World Haskell”,
— Particularly Chapters 0 & 7
— http://book.realworldhaskell.org/

 “Tackling the Awkward Squad”
— Particularly Sections 1 & 2

— http://research.microsoft.com/~simonpj/papers/marktoberdor
fimark.pdf

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 3

Haskell

« Haskell is a programming language that is:

— Similar to ML: general-purpose, strongly typed, higher-order,
functional, supports type inference, ...

— Different from ML.: purely functional core, lazy evaluation,
monadic IO, type classes, ...

— These differences are why we will use it for Homework 5 and
what we will focus on

« Designed by committee in 1980s and 1990s to unify research
efforts in lazy languages. Continues to evolve.

— In 1990, : ongoing.
- "HOPL 3

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 4

http://haskell.org/definition/haskell-report-1.0.ps.gz
http://www.haskell.org/haskellwiki/Language_and_library_specification#The_Haskell_98_report
http://www.haskell.org/haskellwiki/Future_of_Haskell
http://doi.acm.org/10.1145/1238844.1238856
http://doi.acm.org/10.1145/1238844.1238856
http://doi.acm.org/10.1145/1238844.1238856

These “graphs” aren’t mine and aren’t based on real data, but
they’re fun [and make a meta-point ?]

Lecture 8 CSE P505 Autumn 2016 Dan Grossman

Successful Research Languages

1,000,000

10,000

100

1/_

lyr oyr 10yr 15yr

Committee languages

1,000,000

10,000

100

1

lyr oyr 10yr 15yr

C++, Java, Perl, Rub

1,000,000

10,000

100 -

lyr oyr

10yr

15yr

Haskell

1,000,000

10,000

1990 1995 2000 2005 2010

Function types mean more

Thanks to purity, a function type is a stronger spec in Haskell:

« If£ :: A -> B,thenforeverye :: A, weknow £ e
— Equals somewv :: B,or

— Does not terminate [hand-wave exceptions, ...]

e Ifel=e2,thenfel =fe2

— A “bigger deal than it looks” — “no side effects or implicit
state”

— let x = £f e 1n (x,x)
IS indistinguishable from (£ e, £ e)

Lecture 8 CSE P505 Autumn 2016 Dan Grossman

10

Ah, xkcd

Lecture 8

http://xkcd.com/1312/

CSE P505 Autumn 2016 Dan Grossman

11

Syntax differences from OCaml

e x :: Int means “xhastype Int’
« y : ys means “cons y onto list ys”
« \x -> x + 1 “\"means lambda
* Required upper/lowercase:
— EXxpression identifiers are lowercase
— Type constructors (names) are uppercase
— Type variables are lower case (and no ")
« Comments:
- —--toendof line
- {- .. -}
« Attop-level no “let” for bindings
* In other scopes, 1let or where with latter common
« Whitespace relevant (no | on case branches, ...)

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 12

List comprehensions

« “Not a big deal” but convenient syntax for maps, filters, and zips
— Could “desugar”

myData = [1,2,3,4,5,6,7]
twiceData = [2 * x | x <- myData]

-- [2,4,6,8,10,12,14]
twiceEvenData = [2 * x| x <- myData, x mod 2 == 0]
-- [4,8,12]

crossProductDataEvens =
[(1,3J)] 1 <- myData, j <- myData,
(i+j) mod 2 == 0]
-- [(1,1),(1,3),(1,5),(1,7),(2,2),(2,4),..]

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 13

| aziness

 Haskell is a lazy language

* Functions (and data constructors) do not evaluate their
arguments until they need them

— Then “store the result” to avoid re-execution
— By default this happens “everywhere”

« Theoretical “best approach” in pure language
— Humans struggle to determine “when evaluation happens”

— But thanks to purity it doesn’t matter (!)
— And laziness is powerful for “infinite data structures”

Lecture 8 CSE P505 Autumn 2016 Dan Grossman

14

If OCaml vs. Haskell

if’ :: Bool -> a -> a -> a

if’ b el e2 = case b of True -> el | False -> e2

(* WRONG: always evaluates el and e2 *)
let if’ b el e2 = match b with true -> el
| false -> e2
(* RIGHT but no memoization (fine here) and caller
must thunk *)
let if’ b el e2 = match b with true -> el ()
| false -> e2 ()

(* using Lazy library (but avoiding special syntax)
and caller must thunk and use Lazy.from fun ¥*)

let if’ b el e2 = match b with true -> Lazy.force el

false -> Lazy.force e2
Lecture 8 CSE P505 Autumn 2016 Dan Grossman 15

Implmenting OCaml lazy

« Lazy module no big deal:

type 'a tl = Done of "a | NotDone of unit -> ’a
type 'a t = 'a tl ref (* export abstractly ¥*)
let from fun f = ref (NotDone f)
let force p = match !'p with

Done v -> v

NotDone f -> p := Done (f()):

force p

« The point is this is the semantics in Haskell for every function
call and data argument (forced only when its known that “result
of program” needs it)

Lecture 8 CSE P505 Autumn 2016 Dan Grossman

Examples

loop x = loop x
xs = 3+2 : loop 7 : 1+4 : []
x1 = head xs
x2 = (head (tail xs))
x3 = (head (tail (tail xs)))
three = length xs
prefix sums acc ys =
case ys of
[1 -> []
y : ys -> (accty) : prefix sums (acct+y) ys
five = head (prefix sums 0 xs)
main :: IO a
print x1; print x3; print three; print five

-- ; print x2

Lazy programming

« Do not worry about creating (thunks that create) large, even
Infinite data structures
— Then use only what you need

 Example: streams

ones = 1 : ones
nats = prefix sums 0 ones
a few = tail (take 7 nats)

 Example: search problems [not shown]

— “Natural” separation between “generator” of [potentially-
infinite] moves and “consumer” (search strategy)

Lecture 8 CSE P505 Autumn 2016 Dan Grossman

18

Back to purity

« Pure functions are easy to test — “no side effects”

« Example: If xs = reverse (reverse xs), then you can
replace one with the other with high confidence

» And testing this property cannot depend on any state because if
reverse is pure (and everything in “core Haskell” is pure), then

It cannot depend on that state

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 19

Purity I1s beautiful

e Like in OCaml;

higher-order functions, algebraic data types, parametric
polymorphism, ...

» Plus equational reasoning due to “no side effects” and “only
needed computations evaluated”

— Ifx = y,thenf x = £ y

— Order of evaluation is irrelevant, so don’t have to “think
about it being lazy” except for termination/performance

Lecture 8 CSE P505 Autumn 2016 Dan Grossman

20

... and the beast

« But to be useful as well as beautiful, a language must manage
the “Awkward Squad”:

— Input/Output

— Imperative update

— Error recovery (e.g., timing out, catching divide by zero, etc.)
— Foreign-language interfaces

— Concurrency

The whole point of a running a program is to affect the real
world, an “update in place” of something

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 21

Direct approach

Could allow side effects “the usual way” and discourage them
— Example: putchar :: Char -> ()
— And similar for references, exceptions, ffi, concurrency

In practice, this works fine in an eager language (cf. OCaml) but
IS unworkable in a lazy language

— Makes evaluation order relevant again
— And laziness is hard to reason about

— And compiler wants freedom to optimize away laziness when
it can tell “it won’t matter”

This also doesn’t work at the semantics level if we define our
language to have “undefined evaluation order” rather than lazy

— As Haskell does...

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 22

Examples

Evaluation order of function arguments and data constructor
arguments does not matter (and isn’t defined) when functions are

pure.

Example:
((\x y. y) (putchar ‘w’) [putchar ‘x’, putchar ‘y’]

With lazy implementation output still depends on how result is used

By the way:
— What about exceptions?

— Non-deterministic evaluation order “so any exception might
happen” works okay in practice

— Example:y = [3 “div’ 0, head (tail [4])]

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 23

Tackling the “Awkward Squad”

Laziness and side effects are incompatible
« Side effects are important!

« For along time, this tension was embarrassing to the lazy
functional programming community

— [will skip earlier solutions that “worked okay for 1/O in terms
of lazy streams”]

* Inearly 90’s, a surprising solution — the monad -- emerged from
an unlikely source (category theory)

« Haskell's IO monad provides a way of tackling the awkward
squad: I/0O, imperative state, exceptions, foreign functions, &
concurrency.

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 24

Monadic I/O: The Key ldea

I0is a type constructor
- IO tisatype where tis atype

Think of IO t as describing an “action” or “computation” that
when performed produces a result of type t

Now manipulate values of type IO t in your pure lazy language
— Pass them around, combine them, etc.
« With helpful functions and sugar
« But cannot “do an 1O action” inside a program
— Onlymain :: IO a, can be “performed”

* By “running the program”

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 25

A helpful picture

« IO is an abstract type constructor, but think of it as:

type IO t = World -> (t, World)

— “An action” that, when performed, takes “a world” and
returns “a t and a [new] world”

result I t

~
S

oA
W0

P =N

s =N

« Thanks to abstraction, there is no way to “get a world”, so you
can'’t “store or copy a world” (woah!!)

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 26

Actions are first class

« Evaluating an IO t produces an action

— Evaluation has no side effects

— Does not perform-the-action, which [probably] has side
effects

Lecture 8 CSE P505 Autumn 2016 Dan Grossman

27

Simple I/O

Char Char

getChar :: IO Char
putChar :: Char -> IO ()

main :: IO (
main = putChar ’'x’

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 28

Connection actions

« To read a character and then write it back out, we need to
connect two actions

 This is done with the bind combinator...

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 29

Bind

* “Provided” (as are getChar and putChar are)

(>>=) :: IO a -> (a -> I0 b) -> I0 Db

« Semantics is exactly “the compound sequenced action” you
would expect from the type

()

e

echo :: IO ()
echo = getChar >>= putChar

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 30

More on >>=

e Called bind because it binds the result of the left-hand action in
the action on the right

» The result of calling >>= is an action that, when performed:

— Performs the action on the left, producing result rl1
— Applies the function on the right to rl to get another action

— Applies that action, to get another result r2

— Returns r2
el >>= \x -> e2

B
e "

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 31

Printing a character twice

echoDup :: IO ()

echoDup = getChar >>= (\c ->
putChar c >>= (\() ->
putChar c))

« Parentheses are optional for usual lambda-concrete-syntax reasons

* “Do notation” is syntactic sugar for exactly the same thing
— Designed to “look imperative”; will extend it soon
— It's just sugar for creating actions with bind, not performing them!
echoDup :: IO ()
echo = do { ¢ <- getChar;
() <- putChar c;
putChar c; }

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 32

More sugar / helper functions

 The “then” combinator sequences actions when there is no
value to pass forward

(>>) :: I0a -> I0 b -> IO b
m>>n=m>>= (_ -> n)

echoDup :: IO ()

echoDup = getChar >>= (\c ->
putChar c >>
putChar c)

echoDup :: IO ()

echoDup = do { ¢ <- getChar;
putChar c;

putChar c; }
Lecture 8 33

Getting Two Characters

getTwoChars :: IO (Char,Char)
getTwoChars = getChar >>= (\cl ->

getChar >>= (\c2 ->
2?2?27

e (cl,c2) :: (Char, Char) butwe need the ??7?7? to be
replaced with something of type I0 (Char, Char)

* Need a way to convert “plain” values into 10 actions

— Should be fine: “performing the action in a world” is just
“evaluate the expression” [ignoring the world]

Lecture 8 CSE P505 Autumn 2016 Dan Grossman

34

The return combinator

« [l won't try to justify the name “return” — it’'s not what you think
even though it sorta kinda sounds right]

 The "action” return wv just produces result v (no side effects)

return :: a -> IO a

getTwoChars :: IO (Char,Char)

getTwoChars = getChar >>= (\cl ->
getChar >>= (\c2 ->
return (cl,c2)

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 3

Yet more sugar

Can omit braces for do-notation
Can use indentation instead of semicolons
... Ssome more

But the simple stuff is “just”:
- x <- el; e2forel >>= \x. e2
- el; e2forel >> e2

— return e [not necessarily just at end because it's not the
“return” you are used to]

Lecture 8 CSE P505 Autumn 2016 Dan Grossman

36

Bigger Example

« [Of course in practice, you would provide this as a faster primitive]
« Key points:

— Recursion as usual ©

— “Mixing in” regular code that produces actions

getLine :: IO [Char]
getLine = do { ¢ <- getChar ;
if ¢ == '\n' then

return []
else
do { cs <- getLine;

return (c:cs) }}

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 37

A helpful picture [again]

« |Ois an abstract type constructor, but think of it as:

type IO t = World -> (t, World)

— “An action” that, when performed, takes “a world” and
returns “a t and a [new] world”

result t
~ .
S
L (/0(
W0
5 &

« Thanks to abstraction, there is no way to “get a world”, so you
can’t “store or copy a world” (woah!!)

— Enforces “single path” through a sequence of actions
Lecture 8 CSE P505 Autumn 2016 Dan Grossman

Control Structures

» More examples showing how “first-class actions” can be
composed to build your own control structures

— Think: treating code [actions] as data and building up
compound data that can later be ‘run’

forever :: IO () -> IO ()

forever a = a >> forever a

repeatN :: Int -> IO () -> IO ()
repeatN n a = if n=0
then return ()

else a >> repeatN (n-1) a

— Example use:
repeatN 5 (putChar '#’)

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 39

More first-class fun

« Showing general idea of “first-class actions” lets the programmer
define structures of [arbitrary] actions

— No need to bake more than >>= and return into the language

sequence :: [IO a] -> IO [a]
sequence xs =
case xs of
[] -> return []
y:ys=do { r <- y;
rs <- sequence ys;

return (r:rs) }

— Example use:
sequence [getLine, putChar ">’ >> return [], getLine]

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 40

Growing the IO monad

* The IO monad is “built-in” to Haskell viamain :: IO()

» ltis “one-stop shopping” for “all the stuff that needs a well-
defined sequence when performed”

— a.k.a. “the sin bin” combined with “the outside world”
e Just a flavor:

openFile :: FilePath -> IOMode -> IO Handle
hPutStr :: Handle -> String -> IO ()
hGetLine :: Handle -> IO String

hClose :: Handle -> IO ()

data IORef a -—- Abstract type

newlIORef ::a -> IO (IORef a)

readIORef :: IORef a -> IO a

writeIORef :: IORef a -> a -> IO ()

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 41

So we have an imperative language

So now you could write this

count :: (a -> Bool) -> [a] -> IO Int
count £ xs = do { r <- newIORef 0; help r xs }
where
help r xs =

case xs of
[] -—> readIORef r
| x:xs -> 1if £ x
then do { old <- readIORef r;
writeIORef r (old+l);
help r xs }
else help r xs

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 42

But...

« Just because you can write imperative code doesn’t mean you
should
count :: (a -> Bool) -> [a] -> Int
count f xs =
case xs of
[] -> 0
| x:xs -> (if £ x then 1 else 0)
+ count f xs
-—- previous slide’s count
== :: (a -> Bool) -> [a] -> IO Int
-- can get an IO Int with

- return (count f xs)

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 43

The Roach Motel ©

* “Once you get in to the 10 monad, you can’t get out”
— Bind lets you use a value “in there” but “leaves you in there”
— Return “gets anything you want in there”

« So you find yourself “wanting to cheat”, looking for a
magic escape :: IO a -> a

» The presence of such a function would “break everything”

because it would have to “perform the action” [no other way it
could find an a, but then we have side effects in allegedly pure

code, which was the whole thing we were trying to avoid]

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 44

Examples with this problem

« Suppose you want to read some configuration options from a file
but treat the values as “pure constants”

configFileContents :: [String]
configFileContents = lines (readFile "config") --NO!
useOptimization :: Bool

useOptimization = elem "optimize" configFileContents

« This doesn’t and shouldn’t type-check:
readFile :: String->IO String

« Leaves only two options:
— Put all code depending on file contents in IO monad

— Cheat

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 45

The Cheat Exists (!)

 They call it unsafePerformlO not magic_escape
magic escape :: IO a -> a

* Any code that uses it has an obligation to “know” that “it doesn’t
matter”

— When we perform the IO action
— How many times we perform the 10 action
— Relative order of performing this action vs. other actions

[Notice: Reading a read-only, accessible file meets this
obligation]

 The operator has a deliberately long to discourage its use

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 46

BTW, It really is a cheat

* You can use unsafePerformlO to circumvent the type system
arbitrarily

— Exact same issue arises in OCaml without “the value

restriction”
— OCaml has to avoid this; Haskell can say “unsafePerformiO
is unsafe”
r forall a. IORef a —-— This is bad!
r = unsafePerformIO (newIORef (error "urk"))
cast :: b -> ¢
cast x = unsafePerformIO (do {writeIORef r x;

readIORef r })

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 47

Implementation

« The compiler front-end and optimizer doesn’t know that the 1O
monad is special

— It can be restrained by using an unkown “World” type that is
“threaded through”

« Then the back-end code generator can convert the “World”-y
code to in-place imperative operations

type IO t = World -> (t, World) -- in compiler front
return :: a -> I0 a

return a = \w -> (a,w)

(>>=) :: I0a -> (a -=> IO b) -> I0 Db

(>>) m k = \w -> case mw of (r,w') -> k r w

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 48

Summary

« A Haskell program is a single 10 action called main. Inside the
IO monad, evaluation order is defined

« Big IO actions are built by gluing together smaller ones with bind
(>>=) and by converting pure code into actions with return

 |O actions are first-class

— They can be passed to functions, returned from functions,
and stored in data structures

— So it is easy to define new “glue” combinators

 The IO Monad allows Haskell to be pure while efficiently
supporting side effects

* The type system separates the pure from the effectful code

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 49

A Monadic "Outer Layer”

* Inlanguages like ML or Java, the fact that the language is in the
IO monad is baked into the language

— There is no need to mark anything in the type system
because it Iis everywhere.

« In Haskell, the programmer can choose when to live in the IO
monad and when to live in the realm of pure functional
programming

« So itis not Haskell that lacks imperative features, but rather the
other languages that lack the ability to have a statically
distinguishable pure subset

Lecture 8 CSE P505 Autumn 2016 Dan Grossman 50

Now from here [time permitting]

« There are lots of other monads
— All monads have >>= and return
— They can differ on “what else they have”
— Do-notation can be used with “any monad”
* You can write code that is “generic over” “which monad”

— Ridiculously powerful idiom for “threading things™ without
syntactic clutter (cf. when | showed you “state monad” in
OCaml)

« Monad is a “typeclass”
— Haskell supports “other [user-defined] typeclasses too”
— Integrates overloading with polymorphic lambda calculus

Lecture 8 CSE P505 Autumn 2016 Dan Grossman

51

