Where are we

- To talk about functions more precisely, we need to define them as carefully as we did IMP’s constructs
- First try adding functions & local variables to IMP "on the cheap"
 - It didn’t work [see last week]
- Now back up and define a language with nothing but functions
 - [started last week]
 - And then encode everything else

Review

- Cannot properly model local scope via a global heap of integers
 - Functions are not syntactic sugar for assignments to globals
- So let’s build a model of this key concept
 - Or just borrow one from 1930s logic
- And for now, drop mutation, conditionals, and loops
 - We won’t need them!
- The Lambda calculus in BNF

 Expressions: \(e ::= x | \lambda x. e | e e \)

 Values: \(v ::= \lambda x. e \)

That’s all of it! [More review]

A program is an \(e \). To call a function:

substitute the argument for the bound variable

That’s the key operation we were missing

Example substitutions:

\[(\lambda x. x) (\lambda y. y) \rightarrow \lambda y. y\]

\[(\lambda x. \lambda y. y x) (\lambda z. z) \rightarrow \lambda y. (\lambda z. z)\]

\[(\lambda x. x x) (\lambda x. x x) \rightarrow (\lambda x. x x) (\lambda x. x x)\]

Why substitution [More review]

- After substitution, the bound variable is gone
 - So clearly its name didn’t matter
 - That was our problem before
- Given substitution we can define a little programming language
 - (correct & precise definition is subtle; we’ll come back to it)
 - This microscopic PL turns out to be Turing-complete

Full large-step interpreter

```ocaml
type exp = Var of string
  | Lam of string*exp
  | Apply of exp * exp
exception BadExp
let subst e1_with e2_for x = ...
let rec interp_large e =
  match e with
  Var _ -> raise BadExp(* unbound variable *)
| Lam _ -> e (* functions are values *)
| Apply(e1,e2) ->
    let v1 = interp_large e1 in
    let v2 = interp_large e2 in
    match v1 with
    Lam(x,e3) -> interp_large (subst e3 v2 x)
    | _ -> failwith "impossible" (* why? *)
```
Interpreter summarized

- Evaluation produces a value $\text{Lam}(x,e_3)$ if it terminates
- Evaluate application (call) by
 1. Evaluate left
 2. Evaluate right
 3. Substitute result of (2) in body of result of (1)
 4. Evaluate result of (3)

A different semantics has a different evaluation strategy:
 1. Evaluate left
 2. Substitute right in body of result of (1)
 3. Evaluate result of (2)

Another interpreter

```ml
type exp = Var of string
| Lam of string*exp
| Apply of exp * exp
exception BadExp

let subst e1_with e2_for x = (*to be discussed*)
let rec interp_large2 e =
    match e with
    | Var _ -> raise BadExp("unbound variable")
    | Lam _ -> e (*functions are values*)
    | Apply(e1,e2) ->
      let v1 = interp_large2 e1 in
      match v1 with
      | Lam(x,e3) -> interp_large2 (subst e3 e2 x)
      | _ -> failwith "impossible" (* why? *)
```

What have we done

- Syntax and two large-step semantics for the untyped lambda calculus
 - First was “call by value”
 - Second was “call by name”
- Real implementations don’t use substitution
 - They do something equivalent
- Amazing (?) fact:
 - If call-by-value terminates, then call-by-name terminates
 - (They might both not terminate)

What will we do

- Go back to math metalanguage
 - Notes on concrete syntax (relates to OCaml)
 - Define semantics with inference rules
- Lambda encodings (show our language is mighty)
- Define substitution precisely
- Environments

Syntax notes

- When in doubt, put in parentheses
- Math (and OCaml) resolve ambiguities as follows:
 1. $\lambda x. e_1 e_2$ is $(\lambda x. e_1) e_2$
 - not $(\lambda x. e_1 e_2)$

General rule: Function body "starts at the dot" and "ends at the first unmatched right paren"

Example:
$$\lambda x. y (\lambda z. w) q$$

2. $e_1 e_2 e_3$ is $(e_1 e_2) e_3$
 - not $e_1 (e_2 e_3)$

General rule: Application "associates to the left"

So $e_1 e_2 e_3 e_4$ is $$(((e_1 e_2) e_3) e_4)$$

It's just syntax

• As in IMP, we really care about abstract syntax
 – Here, internal tree nodes labeled “\(\lambda\)“ or “apply“ (i.e., “call“)
• Previous 2 rules just reduce parens when writing trees as strings
• Rules may seem strange, but they’re the most convenient
 – Based on 70 years experience
 – Especially with currying

What will we do

• Go back to math metalanguage
 – Notes on concrete syntax (relates to OCaml)
 – Define semantics with inference rules
• Lambda encodings (show our language is mighty)
• Define substitution precisely
• Environments

Next time??

• Small-step
• Play with continuations (“very fancy” language feature)

Inference rules

• A metalanguage for operational semantics
 – Plus: more concise (& readable?) than OCaml
 – Plus: useful for reading research papers
 – Plus: natural support for nondeterminism
 • Definition allowing observably different implementations
 – Minus: less tool support than OCaml (no compiler)
 – Minus: one more thing to learn
 – Minus: painful in Powerpoint

Informal idea

Want to know:
 what values (0, 1, many?) an expression can evaluate to
So define a relation over pairs \((e, v)\):
 – Where \(e\) is an expression and \(v\) is a value
 – Just a subset of all pairs of expressions and values
If the language is deterministic, this relation turns out to be a function from expressions to values

Metalanguage supports defining relations
 – Then prove a relation is a function (if it is)

Making up metasyntax

Rather than write \((e, v)\), we’ll write \(e \Downarrow v\).
 – It’s just metasyntax (!)
 • Could use interp\((e, v)\) or \(v \Downarrow e\) if you prefer
 – Our metasyntax follows PL convention
 • Colors are not conventional (slides: green = metasyntax)
 – And distinguish it from other relations
First step: define the form (arity and metasyntax) of your relation(s):

This is called a judgment

What we need to define

So we can write \(e \Downarrow v\) for any \(e\) and \(v\)
 – But we want such a thing to be “true” to mean \(e\) can evaluate to \(v\) and “false” to mean it cannot

Examples (before the definition):
 – \((\lambda x. y. y) \, (\lambda x. x) \, (\lambda x. x)\) \(\Downarrow\) \(y\) \(\Downarrow\) \(y\) in the relation
 – \((\lambda x. y. y) \, (\lambda x. x) \, (\lambda x. x)\) \(\Downarrow\) \(\lambda z. z\) not in the relation
 – \(\lambda y. y\) \(\Downarrow\) \(\lambda y. y\) in the relation
 – \((\lambda x. y. y) \, (\lambda x. x) \, (\lambda x. x)\) \(\Downarrow\) \(y\) not in the relation
 – \((\lambda x. x) \, (\lambda x. x) \, (\lambda x. x)\) \(\Downarrow\) \(\lambda x. x\) metasyntactically bogus
Inference rules

\[\lambda x. e \quad e \quad e[v/x] = e' \]

- Using definition of a set of 4-tuples for substitution
 - \((\text{exp} \times \text{value} \times \text{variable} \times \text{exp})\)
 - Will define substitution later

Rule schemas

\[e_1 \quad \lambda x. e_3 \quad e_2 \quad v_2 \quad e_3(v_2/x) = e_4 \quad e_4 \quad v \]

- Each rule is a schema you “instantiate consistently”
- So \([\text{app}]\) “works” “for all” \(x, e_1, e_2, e_3, v, e_4\)
- But “each” \(e_1\) has to be the “same” expression
- Replace metavariables with appropriate terms
- Deep connection to logic programming (e.g., Prolog)

Instantiating rules

\[\lambda x. e \quad \lambda x. e \]

- Two example legitimate instantiations:
 - \(\lambda z. z\) \(\lambda z. z\)
 - \(x\) instantiated with \(z\), \(e\) instantiated with \(z\)
- Two example illegitimate instantiations:
 - \(\lambda z. z\) \(\lambda y. z\)
 - \(\lambda z. \lambda y. y z\) \(\lambda z. \lambda z. z\)

Must get your rules “just right” so you don’t allow too much or too little

Derivations

- Tuple is “in the relation” if there exists a derivation of it
 - An upside-down (or not?) tree where each node is an instantiation and leaves are axioms (no hypotheses)
- To show \(e \downarrow v\) for some \(e\) and \(v\), give a derivation
 - But we rarely “hand-evaluate” like this
 - We’re just defining a semantics remember
- Let’s work through an example derivation for
 \((\lambda x. \lambda y. y x) ((\lambda z. z) (\lambda z. z)) \downarrow \lambda y. y (\lambda z. z)\)

Which relation?

So exactly which relation did we define
- The pairs at the bottom of finite-height derivations

Note: A derivation tree is like the tree of calls in a large-step interpreter
- \([\text{when relation is a function}]\)
- Rule being instantiated is branch of the match-expression
- Instantiation is arguments/results of the recursive call
A couple extremes

• This rules are a **bad idea** because either one adds all pairs to the relation

\[
\begin{array}{c}
| e \downarrow v | e' \downarrow v' \\
\end{array}
\]

• This rule is **pointless** because it adds no pairs to the relation

\[
\begin{array}{c}
| e \downarrow v | e \downarrow v \\
\end{array}
\]

Summary so far

• Define judgment via a collection of inference rules
 – Tuple in the relation ("judgment holds") if a derivation (tree of instantiations ending in axioms) exists

As an interpreter, could be "non-deterministic":

• Multiple derivations, maybe multiple \(v \) such that \(e \downarrow v \)
 – Our example language is deterministic
 – In fact, "syntax directed" (≤ 1 rule per syntax form)

• Still need rules for \(e(vx) = e' \)

• Let’s do more judgments (i.e., languages) to get the hang of it…

Call-by-name large-step

\[
\begin{array}{c}
| e \downarrow i | e(vx) = e' \\
\end{array}
\]

[lam]

\[
\begin{array}{c}
| \lambda x . e \downarrow h | \lambda x . e \downarrow v \\
| e1 \downarrow h | \lambda x . e \downarrow v \\
| e2 \downarrow e3 | e3 \downarrow e4 | e4 \downarrow h | \lambda x . e \downarrow v \\
\end{array}
\]

[app]

\[
\begin{array}{c}
| e1 \downarrow v | e2 \downarrow v | e \downarrow v \\
\end{array}
\]

• Easier to see the difference than in OCaml

• Formal statement of amazing fact:
 For all \(e \), if there exists a \(v \) such that \(e \downarrow v \) then there exists a \(v2 \) such that \(e \downarrow v, v2 \)
 (Proof is non-trivial & must reason about substitution)

IMP

• Two judgments \(H ; e \downarrow i \) and \(H ; s \downarrow H2 \)

• Assume \(\text{get}(H.x,i) \) and \(\text{set}(H.x,i,H2) \) are defined

• Let’s try writing out inference rules for the judgments…

What will we do

• Go back to math metalanguage
 – Notes on concrete syntax (relates to OCaml)
 – Define semantics with inference rules

• Lambda encodings (show our language is mighty)

• Define substitution precisely

• Environments

Next time??

• Small-step

• Play with continuations ("very fancy" language feature)

Encoding motivation

• Fairly crazy: we left out integers, conditionals, data structures, …

• Turns out we’re Turing complete
 – We can encode whatever we need
 – (Just like assembly language can)

• Motivation for encodings
 – Fun and mind-expanding
 – Shows we are not oversimplifying the model
 ("numbers are syntactic sugar")
 – Can show languages are too expressive
 Example: C++ template instantiation

• Encodings are also just "(re)definition via translation"
Encoding booleans

The "Boolean Abstract Data Type (ADT)"
- There are 2 booleans and 1 conditional expression
 - The conditional takes 3 (curried) arguments
 - If 1st argument is one bool, return 2nd argument
 - If 1st argument is other bool, return 3rd argument
- Any set of 3 expressions meeting this specification is a proper encoding of booleans
- Here is one (of many):
 - "true" λx. λy. x
 - "false" λx. λy. y
 - "if" λb. λt. λf. b t f

Example

• Given our encoding:
 - "true" λx. λy. x
 - "false" λx. λy. y
 - "if" λb. λt. λf. b t f
- We can derive "if" "true" v1 v2 ⊥ v1
- And every "law of booleans" works out
 - And every non-law does not
- By the way, this is OOP

But...

- Evaluation order matters!
 - With ⊥, our "if" is not YFL’s if
 - "if" "true" (λx. x) (λx. x x) (λx. x x) doesn’t terminate
 - but
 - "if" "true" (λx. x) (λz. (λx. x x) (λx. x x) z) terminates
 - Such “thunking” is unnecessary using ⊥₀

Encoding pairs

• The "Pair ADT"
 - There is 1 constructor and 2 selectors
 - 1st selector returns 1st argument passed to the constructor
 - 2nd selector returns 2nd argument passed to the constructor
- This does the trick:
 - "make_pair" λx. λy. λz. z x y
 - "first" λp. p (λx. λy. x)
 - "second" λp. p (λx. λy. y)
- Example:
 - "snd" ("fst" ("make_pair" ("make_pair" v1 v2) v3)) ⊥ v2

Reusing Lambda

- Is it weird that the encodings of Booleans and pairs both used (λx. λy. x) and (λx. λy. y) for different purposes?
- Is it weird that the same bit-pattern in binary code can represent an int, a float, an instruction, or a pointer?
- Von Neumann: Bits can represent (all) code and data
- Church (?): Lambdas can represent (all) code and data
- Beware the “Turing tarpit”

Encoding lists

• Why start from scratch? Can build on bools and pairs:
 - "empty-list" is "make_pair" "false" "false"
 - "cons" is λh. λt. "make_pair" "true" "make_pair" h t
 - "is-empty" is ...
 - "head" is ...
 - "tail" is ...
- Note:
 - Not too far from how lists are implemented
 - Taking "tail" ("tail" "empty") will produce some lambda
 - Just like, without page-protection hardware, null->tail->tail would produce some bit-pattern
Encoding natural numbers

- Known as “Church numerals”
 - Will skip in the interest of time
- The “natural number” ADT is basically:
 - “zero”
 - “successor” (the add-one function)
 - “plus”
 - “is-equal”
- Encoding is correct if “is-equal” agrees with elementary-school arithmetic
- [Don’t need “full” recursion, but with “full” recursion, can also just do lists of Booleans…]

Recursion

- Can we write useful loops? Yes!
- To write a recursive function:
 - Write a function that takes an f and call f in place of recursion:
 - Example (in enriched language):
 $$\lambda f. \lambda x. \text{if } x=0 \text{ then } 1 \text{ else } (x \ast f(x-1))$$
 - Then apply “fix” to it to get a recursive function
 “fix” $\lambda f. \lambda x. \text{if } x=0 \text{ then } 1 \text{ else } (x \ast f(x-1))$
 - Details, especially in CBV are icky; but it’s possible and need be done only once. For the curious:
 “fix” is $\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))$

More on “fix”

- “fix” is also known as the Y-combinator
- The informal idea:
 - “fix”($\lambda f. e$) becomes something like $e (\text{"fix" } (\lambda f. e)) / f$
 - That’s unrolling the recursion once
 - Further unrollings are delayed (happen as necessary)
- Teaser: Most type systems disallow “fix”
 - So later we’ll add it as a primitive
 - Example: OCaml can never type-check ($x y$)

What will we do

- Go back to math metalanguage
 - Notes on concrete syntax (relates to OCaml)
 - Define semantics with inference rules
- Lambda encodings (show our language is mighty)
- Define substitution precisely
- Environments

Next time??

- Small-step
- Play with continuations (“very fancy” language feature)

Our goal

Need to define $e_1[e_2/x] = e_3$

- Used in [app] rule
- Informally, “replace occurrences of x in e_1 with e_2”
- Shockingly subtle to get right (in theory or programming)
- (Under call-by-value, only need e_2 to be a value, but that doesn’t make it much easier, so define the more general thing.)

Try #1[WRONG]

$$e_1[e_2/x] = e_3$$

$y := x$
$$e_1[e_2/x] = e_3$$
$$x[e/x] = e$$
$$y[e/x] = y$$
$$y[e/x] = y$$
$$e_a[e_2/x] = e_a$$
$$e_b[e_2/x] = e_b$$

- Recursively replace every x leaf with e_2
- But the rule for substituting into (nested) functions is wrong: If the function’s argument binds the same variable (shadowing), we should not change the function’s body
- Example program: $(\lambda x. \lambda x. x)$
Try #2 [WRONG]

\[e_1(e_2/x) = e_3 \]

- \(y \neq x \)
- \(e_1(e_2/x) = e_3 \)
- \(y \neq x \)
- \(x(e/x) = e \)
- \(y(e/x) = y \)
- \((\lambda y . e_1)(e_2/x) = \lambda y . e_3 \)
- \(ea(e_2/x) = ea^* \)
- \(eb(e_2/x) = eb^* \)
- \((ea\ eb)(e_2/x) = ea^*\ eb^* \)
- \((\lambda x . e_1)(e_2/x) = \lambda x . e_1 \)

- Recursively replace every \(x \) leaf with \(e_2 \), but respect shadowing
- Still wrong due to capture [actual technical term]:
 - Example: \((\lambda y . e_1)(y/x) \)
 - Example: \((\lambda y . e_1)(\lambda z . y/x) \)
 - In general, if "\(y \) appears free in \(e_2 \)"

Try #3 [Almost Correct]

- First define an expression’s “free variables” (braces here are set notation)
 - \(\text{FV}(x) = \{x\} \)
 - \(\text{FV}(e_1\ e_2) = \text{FV}(e_1) \cup \text{FV}(e_2) \)
 - \(\text{FV}(\lambda y . e) = \text{FV}(e) – \{y\} \)
- Now require "no capture":
 \[e_1(e_2/x) = e_3 \]
 \(y \neq x \)
 \(y \neq x \)
 \(y \text{ not in FV(e_2)} \)
 \((\lambda y . e_1)(e_2/x) = \lambda y . e_3 \)

Try #3 in Full

- No mistakes with what is here…
- ... but only a partial definition
 - What if \(y \) is in the free-variables of \(e_2 \)

Implicit renaming

\[e_1(e_2/x) = e_3 \]

- \(y \neq x \)
- \(e_1(e_2/x) = e_3 \)
- \(y \neq x \)
- \(y \text{ not in FV(e_2)} \)
- \(x(e/x) = e \)
- \(y(e/x) = y \)
- \((\lambda y . e_1)(e_2/x) = \lambda y . e_3 \)
- \(ea(e_2/x) = ea^* \)
- \(eb(e_2/x) = eb^* \)
- \((ea\ eb)(e_2/x) = ea^*\ eb^* \)
- \((\lambda x . e_1)(e_2/x) = \lambda x . e_1 \)

- But this is a partial definition due to a "syntactic accident", until…
- We allow "implicit, systematic renaming" of any term
 - In general, we never distinguish terms that differ only in variable names
 - A key language-design principle
 - Actual variable choices just as "ignored" as parens
 - Means rule above can "always apply" with a lambda
- Called "alpha-equivalence": terms differing only in names of variables are the same term

Try #4 [correct]

- [Includes systematic renaming and drops an unneeded rule]
More explicit approach

- While "everyone in the PL field":
 - Understands the capture problem
 - Avoids it by saying "implicit systematic renaming"
you may find that unsatisfying…
 … especially if you have to implement substitution
 while avoiding capture
- So this more explicit version also works ("fresh z for y"):
 - You have to "find an appropriate z", but one always exists and
 __$$tmp appended to a global counter "probably works"

\[
\begin{align*}
\text{z not in } \text{FV}(e_1) \cup \text{FV}(e_2) \cup \{x\} & \implies e_1[z/y] = e_3 \quad e_3[e_2/x] = e_4 \\
(\lambda y. e_1)[e_2/x] & = \lambda z. e_4
\end{align*}
\]

Note on metasyntax

- Substitution often thought of as a metafunction, not a judgment
 - I've seen many nondeterministic languages
 - But never a nondeterministic definition of substitution
- So instead of writing:
 \[
 e_1 \downarrow \lambda x. e_3 \quad e_2 \downarrow v_2 \quad e_3[v_2/x] = e_4 \quad e_4 \downarrow v
 \]
 \[
 \text{[app]}
 \]
- Just write:
 \[
 e_1 \downarrow \lambda x. e_3 \quad e_2 \downarrow v_2 \quad e_3[v_2/x] \downarrow v
 \]
 \[
 e_1 e_2 \downarrow v
 \]
 \[
 \text{[app]}
 \]

What will we do

- Go back to math metalanguage
 - Notes on concrete syntax (relates to OCaml)
 - Define semantics with inference rules
- Lambda encodings (show our language is mighty)
- Define substitution precisely
- Environments

Next time??
- Small-step
- Play with continuations ("very fancy" language feature)

Where we’re going

- Done: large-step for untyped lambda-calculus
 - CBV and CBN
 - Note: infinite number of other “reduction strategies”
 - Amazing fact: all equivalent if you ignore termination!
- Now other semantics, all equivalent to CBV:
 - With environments (in OCaml to prep for Homework 3)
 - Basic small-step (easy)
 - Contextual semantics (similar to small-step)
 - Leads to precise definition of continuations

Environments

- Rather than substitute, let’s keep a map from variables to values
 - Called an environment
 - Like IMP’s heap, but immutable and 1 not enough
- So a program “state” is now exp and environment
- A function body is evaluated under the environment where it was defined!
 - Use closures to store the environment
 - See also Lecture 1

Slide repeat...

```ocaml
type exp = Var of string
      | Lam of string*exp
      | Apply of exp * exp
exception BadExp
let subst e1_with e2_for x = (*to be discussed*)
let rec interp_large e =
  match e with
  | Var _ -> raise BadExp(*unbound variable*)
  | Lam _ -> e (*functions are values*)
  | Apply(e1,e2) ->
    let v1 = interp_large e1 in
    let v2 = interp_large e2 in
    match v1 with
    | Lam(x,e3) -> interp_large (subst e3 v2 x)
    | _ -> failwith "impossible" (* why? *)
```

```ocaml
let type exp =
  | Var of string
  | Lam of string*exp
  | Apply of exp * exp

exception BadExp
let subst e1_with e2_for x = (*to be discussed*)
let rec interp_large e =
  match e with
  | Var _ -> raise BadExp(*unbound variable*)
  | Lam _ -> e (*functions are values*)
  | Apply(e1,e2) ->
    let v1 = interp_large e1 in
    let v2 = interp_large e2 in
    match v1 with
    | Lam(x,e3) -> interp_large (subst e3 v2 x)
    | _ -> failwith "impossible" (* why? *)
```
No more substitution

```ocaml
type exp = Var of string
    | Lam of string * exp
    | Apply of exp * exp
    | Closure of string * exp * env

and env = (string * exp) list

let rec interp env e =
    match e with
    Var s -> List.assoc s env (* do the lookup *)
  | Lam(s,e2) -> Closure(s,e2,env) (* store env! *)
  | Closure _ -> e (* closures are values *)
  | Apply(e1,e2) ->
      let v1 = interp env e1 in
      let v2 = interp env e2 in
      match v1 with
      Closure(s,e3,env2) -> interp((s,v2)::env2) e3
      | _ -> failwith "impossible"
```

Worth repeating

- A closure is a pair of code and environment
 - Implementing higher-order functions is not magic or run-time code generation
- An okay way to think about OCaml
 - Like thinking about OOP in terms of vtables
- Need not store whole environment of course
 - See Homework 3

What will we do

- Go back to math metalanguage
 - Notes on concrete syntax (relates to OCaml)
 - Define semantics with inference rules
- Lambda encodings (show our language is mighty)
- Define substitution precisely
 - And revisit function equivalences
- Environments

Next time??
- Small-step
- Play with continuations (“very fancy” language feature)