
CSEP505: Programming Languages
Lecture 2: functional programming, syntax,

semantics (large-step)

Dan Grossman
Autumn 2016

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 2

Where are we

Programming:
• To finish: OCaml tutorial (roughly slides 68- from Lecture 1)
• Idioms using higher-order functions

– Similar-ish to objects
• Tail recursion

Languages:
• Abstract syntax, Backus-Naur Form
• Definition via an interpreter
• Next time: Small-step interpreter and via translation [and more]

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 3

Picking up our tutorial

• We did:
– Recursive higher-order functions
– Records
– Recursive datatypes

• [“Lecture 1”] Now some important odds and ends, quickly:
– Standard-library
– Tuples
– Nested patterns
– Exceptions

• [“Lecture 1”] Then:
– (Simple) Modules

• Then the-slides-that-follow

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 4

6 closure idioms

Closure: Function plus environment where function was defined
– Environment matters when function has free variables

1. Create similar functions
2. Combine functions
3. Pass functions with private data to iterators
4. Provide an abstract data type
5. Currying and partial application
6. Callbacks

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 5

Create similar functions

let addn m n = m + n

let add_one = addn 1

let add_two = addn 2

let rec f m =
 if m=0
 then []
 else (addn m)::(f (m-1))

let lst65432 = List.map (fun x -> x 1) (f 5)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 6

Combine functions

let f1 g h = (fun x -> g (h x))

type ’a option = None | Some of ’a (*predefined*)

let f2 g h x =
 match g x with
 None -> h x
 | Some y -> y

(* just a function pointer *)
let print_int = f1 print_string string_of_int

(* a closure *)
let truncate1 lim f = f1 (fun x -> min lim x) f
let truncate2 lim f = f1 (min lim) f

Also: Pipeline Operator

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 7

let (|>) x f = f x

-34 |> abs |> string_of_int |> compare "34"

(* versus *)

compare "34" (string_of_int (abs (-34)))

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 8

Private data for iterators

let rec map f lst =
 match lst with
 [] -> []
 | hd::tl -> (f hd)::(map f tl)

(* just a function pointer *)
let incr lst = map (fun x -> x+1) lst
let incr = map (fun x -> x+1)

(* a closure *)
let mul i lst = map (fun x -> x*i) lst
let mul i = map (fun x -> x*i)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 9

A more powerful iterator

let rec fold_left f acc lst =
 match lst with
 [] -> acc
 | hd::tl -> fold_left f (f acc hd) tl

(* just function pointers *)
let f1 = fold_left (fun x y -> x+y) 0
let f2 = fold_left (fun x y -> x && y>0) true

(* a closure *)
let f3 lst lo hi =
 fold_left
 (fun x y -> if y>lo && y<hi then x+1 else x)
 0 lst

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 10

Thoughts on fold

• Functions like fold decouple recursive traversal (“walking”)
from data processing

• No unnecessary type restrictions
• Similar to visitor pattern in OOP

– Private fields of a visitor like free variables

• Very useful if recursive traversal hides fault tolerance (thanks to
no mutation) and massive parallelism

MapReduce: Simplified Data Processing on Large Clusters
Jeffrey Dean and Sanjay Ghemawat
6th Symposium on Operating System Design and Implementation
2004

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 11

Provide an ADT

• Note: This is mind-bending stuff

type set = { add : int -> set;
 member : int -> bool }
let empty_set =
 let exists lst j = (*could use fold_left!*)
 let rec iter rest =
 match rest with
 [] -> false
 | hd::tl -> j=hd || iter tl in
 iter lst in
 let rec make_set lst =
 { add = (fun i -> make_set(i::lst));
 member = exists lst } in
 make_set []

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 12

Thoughts on ADT example

• By “hiding the list” behind the functions, we know clients do not
assume the representation

• Why? All you can do with a function is apply it
– No other primitives on functions
– No reflection
– No aspects
– …

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 13

Currying

• We’ve been using currying a lot
– Efficient and convenient in OCaml
– (Partial application not efficient, but still convenient)

• Just remember that the semantics is to build closures:

– More obvious when desugared:

let f = fun x -> (fun y -> (fun z -> …))

let a = ((f 1) 2) 3

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 14

Callbacks

• Library takes a function to apply later, on an event:
– When a key is pressed
– When a network packet arrives
– …

• Function may be a filter, an action, …

• Various callbacks need private state of different types

• Fortunately, a function’s type does not depend on the types of

its free variables

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 15

Callbacks cont’d

• Compare OOP: subclassing for private state

type event = …
val register_callback : (event->unit)->unit

• Compare C: a void* arg for private state

abstract class EventListener {
 abstract void m(Event); //”pure virtual”
}
void register_callback(EventListener);

void register_callback(void*,
 void (*)(void*,Event);
// void* and void* better be compatible
// callee must pass back the same void*

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 16

Recursion and efficiency

• Recursion is more powerful than loops
– Just pass loop state as another argument

• But isn’t it less efficient?

– Function calls more time than branches?

• Compiler’s problem
• An O(1) detail irrelevant in 99+% of code

– More stack space waiting for return

• Shared problem: use tail calls where it matters
• An O(n) issue (for recursion-depth n)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 17

Tail recursion example

(* factorial *)
let rec fact1 x =
 if x==0 then 1 else x * (fact1(x-1))

• More complicated, more efficient version

let fact2 x =
 let rec f acc x =
 if x==0 then acc else f (acc*x) (x-1)
 in
 f 1 x

• Accumulator pattern (base-case becomes initial accumulator)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 18

Another example

• Again O(n) stack savings
• But input was already O(n) size

let rec sum1 lst =
 match lst with
 [] -> 0
 | hd::tl -> hd + (sum1 tl)
let sum2 lst =
 let rec f acc lst =
 match lst with
 [] -> acc
 | hd::tl -> f (acc+hd) tl
 in
 f 0 lst

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 19

Half-example

• One tail-call, one non
• Tail recursive version will build O(n) worklist

– No space savings
– That’s what the stack is for!

• O(1) space requires mutation and no re-entrancy

type tree = Leaf of int | Node of tree * tree
let sum tr =
 let rec f acc tr =
 match tr with
 Leaf i -> acc+i
 | Node(left,right) -> f (f acc left) right
 in
 f 0 tr

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 20

Informal definition

If the result of f x is the result of the enclosing function, then the
call is a tail call (in tail position):

• In (fun x -> e), the e is in tail position.
• If if e1 then e2 else e3 is in tail position, then e2 and e3

are in tail position.
• If let p = e1 in e2 is in tail position, then e2 is in tail

position.
• …

• Note: for call e1 e2, neither is in tail position

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 21

Defining languages

• We have built up some terminology and relevant programming
prowess

• Now
– What does it take to define a programming language?
– How should we do it?

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 22

Syntax vs. semantics

Need: what every string means:
 “Not a program” or “produces this answer”

Typical decomposition of the definition:
1. Lexing, a.k.a. tokenization, string to token list
2. Parsing, token list to labeled tree (AST)
3. Type-checking (a filter)
4. Semantics (for what got this far)

For now, ignore (3) (accept everything) and skip (1)-(2)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 23

Abstract syntax

To ignore parsing, we need to define trees directly:
• A tree is a labeled node and an ordered list of (zero or more)

child trees.
• A PL’s abstract syntax is a subset of the set of all such trees:

– What labels are allowed?
– For a label, what children are allowed?

Advantage of trees: no ambiguity, i.e., no need for parentheses

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 24

Syntax metalanguage
• So we need a metalanguage to describe what syntax trees are

allowed in our language.
• A fine choice: OCaml datatypes

• +: concise and direct for common things
• -: limited expressiveness (silly example: nodes labeled Foo

must have a prime-number of children)
• In practice: push such limitations to type-checking

type exp = Int of int | Var of string
 | Plus of exp * exp | Times of exp * exp
type stmt = Skip | Assign of string * exp
 | Seq of stmt * stmt
 | If of exp * stmt * stmt
 | While of exp * stmt

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 25

We defined a subset?

• Given a tree, does the datatype describe it?
– Is root label a constructor?
– Does it have the right children of the right type?
– Recur on children

• Worth repeating: a finite description of an infinite set
– (all?) PLs have an infinite number of programs
– Definition is recursive, but not circular!

• Made no mention of parentheses, but we need them to “write a

tree as a string”

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 26

BNF

A more standard metalanguage is Backus-Naur Form
• Common: should know how to read and write it

e ::= c | x | e + e | e * e
s ::= skip | x := e | s;s | if e then s else s | while e s

(x in {x1,x2,…,y1,y2,…,z1,z2,…,…})
(c in {…,-2,-1,0,1,2,…})

Also defines an infinite set of trees. Differences:
• Different metanotation (::= and |)
• Can omit labels (constructors), e.g., “every c is an e”
• We changed some labels (e.g., := for Assign)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 27

Ambiguity revisited

• Again, metalanguages for abstract syntax just assume there are
enough parentheses

• Bad example:
if x then skip else y := 0; z := 0

• Good example:

y:=1; (while x (y:=y*x; x:= x-1))

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 28

Our first PL

• Let’s call this dumb language IMP
– It has just mutable ints, a while loop, etc.
– No functions, locals, objects, threads, …

Defining it:
1. Lexing (e.g., what ends a variable)
2. Parsing (make a tree from a string)
3. Type-checking (accept everything)
4. Semantics (to do)

You’re not responsible for (1) and (2)! Why…

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 29

Syntax is boring

• Parsing PLs is a computer-science success story
• “Solved problem” taught in compilers
• Boring because:

– “If it doesn’t work (efficiently), add more
keywords/parentheses”

– Extreme: put parentheses on everything and don’t use infix
• 1950s example: LISP (foo …)
• 1990s example: XML <foo> … </foo>

• So we’ll assume we have an AST

(Counter-argument: Parsing still a pain and source of security
vulnerabilities in practice.)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 30

Toward semantics

Now: describe what an AST “does/is/computes”
• Do expressions first to get the idea
• Need an informal idea first

– A way to “look up” variables (the heap)
• Need a metalanguage

– Back to OCaml (for now)

e ::= c | x | e + e | e * e
s ::= skip | x := e | s;s | if e then s else s | while e s

(x in {x1,x2,…,y1,y2,…,z1,z2,…,…})
(c in {…,-2,-1,0,1,2,…})

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 31

An expression interpreter

• Definition by interpretation: Program means what an interpreter
written in the metalanguage says it means

type exp = Int of int | Var of string
 | Plus of exp * exp | Times of exp * exp
type heap = (string * int) list

let rec lookup h str = … (*lookup a variable*)

let rec interp_e (h:heap) (e:exp) =
 match e with
 Int i -> i
 |Var str -> lookup h str
 |Plus(e1,e2) -> (interp_e h e1)+(interp_e h e2)
 |Times(e1,e2)-> (interp_e h e1)*(interp_e h e2)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 32

Not always so easy
let rec interp_e (h:heap) (e:exp) =
 match e with
 Int i -> i
 |Var str -> lookup h str
 |Plus(e1,e2) ->(interp_e h e1)+(interp_e h e2)
 |Times(e1,e2)->(interp_e h e1)*(interp_e h e2)

• By fiat, “IMP’s plus/times” is the same as OCaml’s
• We assume lookup always returns an int

– A metalanguage exception may be inappropriate
– So define lookup to return 0 by default?

• What if we had division?

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 33

On to statements

• A wrong idea worth pursuing:

let rec interp_s (h:heap) (s:stmt) =
 match s with
 Skip -> ()
 |Seq(s1,s2) -> interp_s h s1 ;
 interp_s h s2
 |If(e,s1,s2) -> if interp_e h e
 then interp_s h s1
 else interp_s h s2
 |Assign(str,e) -> (* ??? *)
 |While(e,s1) -> (* ??? *)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 34

What went wrong?

• In IMP, expressions produce numbers (given a heap)
• In IMP, statements change heaps, i.e., they produce a heap

(given a heap)

let rec interp_s (h:heap) (s:stmt) =
 match s with
 Skip -> h
 |Seq(s1,s2) -> let h2 = interp_s h s1 in
 interp_s h2 s2
 |If(e,s1,s2) -> if (interp_e h e) <> 0
 then interp_s h s1
 else interp_s h s2
 |Assign(str,e) -> update h str (interp_e h e)
 |While(e,s1) -> (* ??? *)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 35

About that heap

• In IMP, a heap maps strings to values
• Yes, we could use mutation, but that is:

– less powerful (old heaps do not exist)
– less explanatory (interpreter passes current heap)

type heap = (string * int) list

let rec lookup h str =
 match h with
 [] -> 0 (* kind of a cheat *)
 |(s,i)::tl -> if s=str then i else lookup tl str
let update h str i = (str,i)::h

• As a definition, this is great despite terrible waste of space

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 36

Meanwhile, while

• Loops are always the hard part!

let rec interp_s (h:heap) (s:stmt) =
 match s with
 …
 | While(e,s1) -> if (interp_e h e) <> 0
 then let h2 = interp_s h s1 in
 interp_s h2 s
 else h

• s is While(e,s1)
• Semi-troubling circular definition

– That is, interp_s might not terminate

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 37

Finishing the story

• Have interp_e and interp_s
• A “program” is just a statement
• An initial heap is (say) one that maps everything to 0

type heap = (string * int) list

let empty_heap = []

let interp_prog s =
 lookup (interp_s empty_heap s) “ans”

Fancy words: We have defined a large-step
operational-semantics using OCaml as our metalanguage

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 38

Fancy words

• Operational semantics
– Definition by interpretation
– Often implies metalanguage is “inference rules”

 (a mathematical formalism we’ll learn in a couple weeks)

• Large-step
– Interpreter function “returns an answer” (or diverges)
– So definition says nothing about intermediate computation
– Simpler than small-step when that’s okay

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 39

Language properties

• A semantics is necessary to prove language properties

• Example: Expression evaluation is total and deterministic
 “For all heaps h and expressions e, there is exactly one integer

i such that interp_e h e returns i”
– Rarely true for “real” languages
– But often care about subsets for which it is true

• Prove for all expressions by induction on the tree-height of an

expression

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 40

Small-step [In Lecture 3]

• Now redo our interpreter with small-step
– An expression/statement “becomes a slightly simpler thing”
– A less efficient interpreter, but has advantages as a

definition (discuss after interpreter)

Large-step Small-step

interp_e heap->exp->int heap->exp->exp

interp_s heap->stmt->heap heap->stmt->(heap*stmt)

