CSEP505: Programming Languages
Lecture 2: functional programming, syntax,
semantics (large-step)

Dan Grossman
Autumn 2016

Where are we

Programming:
* To finish: OCaml tutorial (roughly slides 68- from Lecture 1)
 Idioms using higher-order functions
— Similar-ish to objects
+ Tail recursion

Languages:

» Abstract syntax, Backus-Naur Form

« Definition via an interpreter

* Next time: Small-step interpreter and via translation [and more]

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 2

Picking up our tutorial

* We did:
— Recursive higher-order functions
— Records
— Recursive datatypes
* [‘Lecture 1”] Now some important odds and ends, quickly:
— Standard-library
— Tuples
— Nested patterns
— Exceptions
* [‘Lecture 1”] Then:
— (Simple) Modules

* Then the-slides-that-follow

Lecture 2 CSE P505 Autumn 2016 Dan Grossman

6 closure idioms

Closure: Function plus environment where function was defined
— Environment matters when function has free variables

Create similar functions

Combine functions

Pass functions with private data to iterators
Provide an abstract data type

Currying and partial application

Callbacks

o g s wN R

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 4

Create similar functions

let addn m n =m + n
let add one = addn 1

addn 2

let add_two

let rec £ m
if m=0
then []
else (addn m):: (f (m-1))

let 1st65432 = List.map (fun x -> x 1) (£ 5)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman

Combine functions

let f1 g h = (fun x -> g (h x))
type 'a option = None | Some of 'a (*predefined*)

let f2 g h x =
match g x with
None -> h x

| Some y -> y

(* just a function pointer ¥*)
let print int = fl print string string of int

(* a closure *)
let truncatel 1lim £ = f1 (fun x -> min lim x) £
let truncate2 1lim £ = f1 (min 1lim) £

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 6

Also: Pipeline Operator

let (|>) x £ = £ x
-34 |> abs |> string of int |> compare "34"

(* versus *)

compare "34" (string of_ int (abs (-34)))

Lecture 2 CSE P505 Autumn 2016 Dan Grossman

Private data for iterators

let rec map £ 1lst =
match 1lst with
[1 -> [
| hd::tl -> (£ hd):: (map £ tl1)

(* just a function pointer *)
let incr 1lst = map (fun x -> x+1) lst
let incr = map (fun x -> x+1)

(* a closure *)

let mul i 1st = map (fun x -> x*i) lst
let mul i = map (fun x -> x*i)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 8

A more powerful iterator

let rec fold_left f acc 1lst =
match 1lst with
[1 -> acc
| hd::tl -> fold left £ (f acc hd) tl

(* just function pointers ¥*)
let f1 = fold_left (fun x y -> x+y) 0
let £2 = fold left (fun x y -> x && y>0) true

(* a closure *)
let £3 1st lo hi =

fold left

(fun x y -> if y>lo && y<hi then x+l1 else x)
0 1st

Lecture 2 CSE P505 Autumn 2016 Dan Grossman

Thoughts on fold

* Functions like £o1d decouple recursive traversal (“walking”)
from data processing
* No unnecessary type restrictions
+ Similar to visitor pattern in OOP
— Private fields of a visitor like free variables

» Very useful if recursive traversal hides fault tolerance (thanks to
no mutation) and massive parallelism

MapReduce: Simplified Data Processing on Large Clusters
Jeffrey Dean and Sanjay Ghemawat

6th Symposium on Operating System Design and Implementation
2004

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 10

Provide an ADT

* Note: This is mind-bending stuff

type set = { add : int -> set;
member : int -> bool }
let empty set =
let exists 1lst j = (*could use fold left!¥)
let rec iter rest =
match rest with
[1 -> false
| hd::t1l -> j=hd || iter tl in
iter 1st in
let rec make_set lst =
{ add = (fun i -> make set(i::1lst));
member = exists lst } in
make set []

Lecture 2 CSE P505 Autumn 2016 Dan Grossman

1

Thoughts on ADT example

+ By “hiding the list” behind the functions, we know clients do not
assume the representation

* Why? All you can do with a function is apply it
— No other primitives on functions
— No reflection
— No aspects

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 12

Currying

» We've been using currying a lot
— Efficient and convenient in OCaml
— (Partial application not efficient, but still convenient)

« Just remember that the semantics is to build closures:
— More obvious when desugared:

let £ = fun x -> (fun y -> (fun z -> ..))

let a ((£1) 2) 3

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 13

Callbacks

+ Library takes a function to apply later, on an event:
— When a key is pressed
— When a network packet arrives

» Function may be a filter, an action, ...
» Various callbacks need private state of different types

» Fortunately, a function’s type does not depend on the types of
its free variables

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 14

Callbacks cont’'d

type event = ..
val register callback : (event->unit)->unit

» Compare OOP: subclassing for private state

abstract class EventListener ({
abstract void m(Event); //”pure virtual”

}
void register callback (EventListener) ;
« Compare C: a void* arg for private state

void register callback (void*,

void (*) (void* , Event) ;
// void* and void* better be compatible
// callee must pass back the same void*

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 15

Recursion and efficiency

* Recursion is more powerful than loops
— Just pass loop state as another argument

« Butisn'tit less efficient?
— Function calls more time than branches?
« Compiler’s problem
* An O(1) detail irrelevant in 99+% of code
— More stack space waiting for return
» Shared problem: use tail calls where it matters

« An O(n) issue (for recursion-depth n)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 16

Talil recursion example

(* factorial ¥*)
let rec factl x =
if x==0 then 1 else x * (factl(x-1))

» More complicated, more efficient version

let fact2 x =
let rec £ acc x =
if x==0 then acc else f (acc*x) (x-1)
in
£f1lx

* Accumulator pattern (base-case becomes initial accumulator)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 17

Another example

let rec suml 1lst =
match 1lst with
[1] -> 0
| hd::t1l -> hd + (suml tl)
let sum2 1lst =
let rec f acc 1lst =
match 1lst with
[1 -> acc
| hd::tl -> £ (acc+hd) tl
in
£ 0 1st

* Again O(n) stack savings
* Butinput was already O(n) size

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 18

Half-example

type tree = Leaf of int | Node of tree * tree
let sum tr =
let rec £ acc tr =
match tr with
Leaf i -> acc+i
| Node(left,right) -> £ (f acc left) right
in
f 0 tr
* One tail-call, one non
 Tail recursive version will build O(n) worklist
— No space savings
— That's what the stack is for!
* O(1) space requires mutation and no re-entrancy

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 19

Informal definition

If the result of £ x is the result of the enclosing function, then the
call is a tail call (in tail position):

* In (fun x -> e), the eis in tail position.

« Ifif el then e2 else e3isin tail position, then e2 and e3
are in tail position.

* Iflet p = el in e2isin tail position, then e2 is in tail
position.

* Note: for call el e2, neither is in tail position

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 20

Defining languages

* We have built up some terminology and relevant programming
prowess

* Now

— What does it take to define a programming language?
— How should we do it?

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 21

Syntax vs. semantics

Need: what every string means:
“Not a program” or “produces this answer”

Typical decomposition of the definition:

1. Lexing, a.k.a. tokenization, string to token list
2. Parsing, token list to labeled tree (AST)

3. Type-checking (a filter)

4. Semantics (for what got this far)

For now, ignore (3) (accept everything) and skip (1)-(2)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 22

Abstract syntax

To ignore parsing, we need to define trees directly:

» Atreeis a labeled node and an ordered list of (zero or more)
child trees.

* A PL’s abstract syntax is a subset of the set of all such trees:
— What labels are allowed?
— For a label, what children are allowed?

Advantage of trees: no ambiguity, i.e., no need for parentheses

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 23

Syntax metalanguage

* So we need a metalanguage to describe what syntax trees are
allowed in our language.

* A fine choice: OCaml datatypes

type exp = Int of int | Var of string

| Plus of exp * exp | Times of exp * exp
type stmt = Skip | Assign of string * exp

| Seq of stmt * stmt

| If of exp * stmt * stmt

| While of exp * stmt

» +: concise and direct for common things

» - limited expressiveness (silly example: nodes labeled Foo
must have a prime-number of children)

» In practice: push such limitations to type-checking

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 24

We defined a subset?

» Given a tree, does the datatype describe it?
— Is root label a constructor?
— Does it have the right children of the right type?
— Recur on children

» Worth repeating: a finite description of an infinite set
— (all?) PLs have an infinite number of programs
— Definition is recursive, but not circular!

* Made no mention of parentheses, but we need them to “write a
tree as a string”

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 25

BNF

A more standard metalanguage is Backus-Naur Form
* Common: should know how to read and write it

e =C| X | e+ e | e* e
S =skip| x:=e | s;s | ife thenselses | whilees
(xin {x1,x2,...,y1,y2,...,21,22,...,...})

(cin{...-2,1,0,1,2,...)

Also defines an infinite set of trees. Differences:

+ Different metanotation (: :=and |)

« Can omit labels (constructors), e.g., “every c is an e”
* We changed some labels (e.g., := for Assign)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 26

Ambiguity revisited

+ Again, metalanguages for abstract syntax just assume there are
enough parentheses

* Bad example:
if x then skip elsey :=0; z :=0

+ Good example:
y:=1; (while x (y:=y*x; x:= x-1))

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 27

Our first PL

» Let’s call this dumb language IMP
— It has just mutable ints, a while loop, etc.
— No functions, locals, objects, threads, ...

Defining it:

1. Lexing (e.g., what ends a variable)

2. Parsing (make a tree from a string)

3. Type-checking (accept everything)

4. Semantics (to do)

You're not responsible for (1) and (2)! Why...

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 28

Syntax is boring

» Parsing PLs is a computer-science success story
* “Solved problem” taught in compilers
* Boring because:
— “If it doesn’t work (efficiently), add more
keywords/parentheses”
— Extreme: put parentheses on everything and don’t use infix
+ 1950s example: LISP (foo ...)
* 1990s example: XML <foo> ... </foo>
* So we'll assume we have an AST

(Counter-argument: Parsing still a pain and source of security
vulnerabilities in practice.)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 29

Toward semantics

e
S

cC| X | e+ e
skip | x:=e |

| ife thenselses | whilees

(xin {x1,x2,...,y1,y2,...,21,22,...,...})
(cin{...,-2,-1,0,1,2,...})

Now: describe what an AST “does/is/computes”
» Do expressions first to get the idea
* Need an informal idea first
— A way to “look up” variables (the heap)
* Need a metalanguage
— Back to OCaml (for now)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 30

An expression interpreter

» Definition by interpretation: Program means what an interpreter
written in the metalanguage says it means

type exp = Int of int | Var of string
| Plus of exp * exp | Times of exp * exp
type heap = (string * int) list

let rec lookup h str = .. (*lookup a variable¥*)

let rec interp e (h:heap) (e:exp) =
match e with
Int i -> i
|Var str -> lookup h str
|Plus(el,e2) -> (interp e h el)+(interp e h e2)
|Times (el,e2) -> (interp e h el) *(interp e h e2)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 31

Not always so easy

let rec interp e (h:heap) (e:exp) =
match e with
Int i -> i
|Var str -> lookup h str
|Plus(el,e2) ->(interp e h el)+(interp e h e2)
|Times (el,e2) ->(interp e h el) *(interp e h e2)

* By fiat, “IMP’s plus/times” is the same as OCaml’s

* We assume lookup always returns an int
— A metalanguage exception may be inappropriate
— So define lookup to return 0 by default?

* What if we had division?

Lecture 2 CSE P505 Autumn 2016 Dan Grossman

32

On to statements

* A wrong idea worth pursuing:

let rec interp_s (h:heap) (s:stmt) =
match s with
Skip -> ()
|Seq(sl,s2) -> interp s h sl ;
interp s h s2
|If(e,sl,s2) -> if interp e h e
then interp s h sl
else interp s h s2
|Assign(str,e) -> (* ??2? *)
|While(e,sl) -> (* 22?2 *)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 33

What went wrong?

* In IMP, expressions produce numbers (given a heap)

* In IMP, statements change heaps, i.e., they produce a heap
(given a heap)

let rec interp s (h:heap) (s:stmt) =
match s with
Skip -> h
|Seq(sl,s2) -> let h2 = interp s h sl in
interp s h2 s2
|If(e,sl,s2) -> if (interp e h e) <> 0
then interp_s h sl
else interp s h s2
|Assign(str,e) -> update h str (interp e h e)
|While(e,sl) -> (* 22?2 *)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman

34

About that heap

* In IMP, a heap maps strings to values
* Yes, we could use mutation, but that is:
— less powerful (old heaps do not exist)
— less explanatory (interpreter passes current heap)

type heap = (string * int) list

let rec lookup h str =
match h with
[] -> 0 (* kind of a cheat *)
| (s,i)::tl -> if s=str then i else lookup tl str
let update h str i = (str,i)::h

« As a definition, this is great despite terrible waste of space

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 35

Meanwhile, while

* Loops are always the hard part!

let rec interp s (h:heap) (s:stmt) =
match s with

| While(e,sl) -> if (interp e h e) <> 0

then let h2 = interp s h sl in

interp s h2 s
else h

e sisWhile(e,sl)

» Semi-troubling circular definition
— Thatis, interp_s might not terminate

Lecture 2 CSE P505 Autumn 2016 Dan Grossman

36

Finishing the story

* Have interp_e and interp_s
* A ‘“program” is just a statement
» Aninitial heap is (say) one that maps everything to 0

type heap = (string * int) list
let empty heap = []

let interp prog s =
lookup (interp s empty heap s) “ans”

Fancy words: We have defined a large-step
operational-semantics using OCaml as our metalanguage

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 37

Fancy words

* Operational semantics
— Definition by interpretation

— Often implies metalanguage is “inference rules”
(a mathematical formalism we’ll learn in a couple weeks)

+ Large-step
— Interpreter function “returns an answer” (or diverges)
— So definition says nothing about intermediate computation
— Simpler than small-step when that’s okay

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 38

Language properties

* A semantics is necessary to prove language properties

» Example: Expression evaluation is total and deterministic
“For all heaps h and expressions e, there is exactly one integer
i such that interp e h ereturns i”
— Rarely true for “real” languages
— But often care about subsets for which it is true

» Prove for all expressions by induction on the tree-height of an
expression

Lecture 2 CSE P505 Autumn 2016 Dan Grossman

39

Small-step [In Lecture 3]

* Now redo our interpreter with small-step
— An expression/statement “becomes a slightly simpler thing”
— A less efficient interpreter, but has advantages as a
definition (discuss after interpreter)

Large-step Small-step

interp e heap->exp->int heap->exp->exp

interp_s heap->stmt->heap |heap->stmt->(heap*stmt)

Lecture 2 CSE P505 Autumn 2016 Dan Grossman 40

