
CSEP505: Programming Languages

Lecture 10: Object-Oriented Programming;

Course Wrap-Up

Dan Grossman

Autumn 2016

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 2

Onto OOP

Now let’s talk about (class-based) object-oriented programming

• What’s different from what we have been doing

– Boils down to one important thing

• How do we define it (will stay informal)

• Supporting extensibility

• Some “issues” not handled well

Won’t have time for: “more advanced OOP topics”

– Multiple inheritance, static overloading, multimethods, …

– I, at least, have “no regrets” about “making room for Haskell”

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 3

OOP the sales pitch

OOP lets you:

1. Build some extensible software concisely

2. Exploit an intuitive analogy between interaction of physical

entities and interaction of software pieces

It also:

• Raises tricky semantic and style issues worthy of careful PL

study

• Is more complicated than functions

– Does not necessarily mean it’s worse

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 4

So what is OOP?

OOP “looks like this” pseudocode, but what is the essence?

class Pt1 extends Object {

 int x;

 int get_x() { x }

 unit set_x(int y) { self.x = y }

 int distance(Pt1 p) { p.get_x() – self.get_x() }

 constructor() { x = 0 }

}

class Pt2 extends Pt1 {

 int y;

 int get_y() { y }

 int get_x() { 34 + super.get_x() }

 constructor() { super(); y = 0 }

}

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 5

Class-based OOP

In (pure) class-based OOP:

1. Every value is an object

2. Objects communicate via messages (handled by methods)

3. Objects have their own [private] state

4. Every object is an instance of a class

5. A class describes its instances’ behavior

Pure OOP

• Can make “everything an object” (cf. Smalltalk, Ruby, …)

– Just like “everything a function” or “everything a string” or …

• Essentially identical to the lambda-calculus encoding of Booleans

– Closures are just objects with one method, perhaps called

“apply”, and a private field for the environment

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 6

class True extends Boolean {

 myIf(x,y) { x.m() }

}

class False extends Boolean {

 myIf(x,y) { y.m() }

}

e.myIf((new Object() { m() {…}),

 (new Object() { m() {…}))

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 7

OOP can mean many things

Why is this approach such a popular way to structure software?

• Implicit self/this ?

• An ADT (private fields)?

• Inheritance: method/field extension, method override?

• Dynamic dispatch?

• Subtyping? [will do types after the rest, like earlier in course]

• All the above (plus constructor(s)) in one (class) definition

Design question: Better to have small orthogonal features or one

“do it all” feature?

Anyway, let’s consider how “unique to OO” each is…

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 8

OOP as ADT-focused

Fields, methods, constructors often have visibilities

What code can invoke a member/access a field?

• Methods of the same object?

• Methods defined in same class?

• Methods defined in a subclass?

• Methods in another “boundary” (package, assembly, friend, …)

• Methods defined anywhere?

Hiding concrete representation matters, in any paradigm

– For simple examples, objects or modules work fine

– But OOP struggles with binary methods…

Simple Example

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 9

class IntStack {

 … // fields

 int push(Int i) {…}

 constructor() { …}

 …

}

new IntStack().push(42);

type int_stack

val empty : int_stack

val push : int ->

 int_stack ->

 int_stack

push 42 empty

Binary-Method Example

A “bag” supporting “choose” an element uniformly at random

• Various ML implementations work fine (e.g., use an int list)

• Pure OOP implementation with private-to-object fields impossible

– Fix: widen the interface (although clients shouldn’t use it)

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 10

class ChooseBag {

 … // fields

 constructor(Int i){…}

 ChooseBag union

 (ChooseBag that){…}

 Int choose() {…}

type choose_bag

val single : int ->

 choose_bag

val union : choose_bag ->

 choose_bag ->

 choose_bag

val choose : choose_bag ->

 int

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 11

Inheritance & override

Subclasses:

• Inherit superclass’ members

• Can override methods

• Can use super calls

Can we code this up in OCaml/F#/Haskell?

• No because of field-name reuse and lack of subtyping

– But ignoring that we can get close…

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 12

(More than) records of functions

If OOP = functions + private state, we already have it

– But it’s more (e.g., inheritance)

type pt1 = {get_x : unit -> int;

 set_x : int -> unit;

 distance : pt1 -> int}

let pt1_constructor () =

 let x = ref 0 in

 let rec self = {

 get_x = (fun() -> !x);

 set_x = (fun y -> x := y);

 distance = (fun p -> p.get_x() +self.get_x())

 } in

 self

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 13

Almost OOP?

let pt1_constructor () =

 let x = ref 0 in

 let rec self = {

 get_x = (fun() -> !x);

 set_x = (fun y -> x := y);

 distance = (fun p -> p.get_x()+self.get_x())

 } in self

(* note: field reuse precludes type-checking *)

let pt2_constructor () = (* extends Pt1 *)

 let r = pt1_constructor () in

 let y = ref 0 in

 let rec self = {

 get_x = (fun() -> 34 + r.get_x());

 set_x = r.set_x;

 distance = r.distance;

 get_y = (fun() -> !y);

 } in self

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 14

Problems

Small problems:

• Have to change pt2_constructor whenever
pt1_constructor changes

• But OOPs have tons of “fragile base class” issues too

– Motivates C#’s version support

• No direct access to “private fields” of superclass

Big problem:

• Distance method in a pt2 doesn’t behave how it does in OOP

• We do not have late-binding of self (i.e., dynamic dispatch)

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 15

The essence

Claims so far:

Class-based objects are:

• So-so ADTs

• Some syntactic sugar for extension and override

And:

• The essence of OOP (versus records of closures) is a
fundamentally different rule for what self maps to in the

environment

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 16

More on late-binding

Late-binding, dynamic-dispatch, and open-recursion are all
essentially synonyms

The simplest example I know:

let c1 () =

 let rec r = {

 even = (fun i -> i=0 || r.odd (i-1));

 odd = (fun i -> i<>0 && r.even (i-1))

 } in r

let c2 () =

 let r1 = c1 () in

 let rec r = {

 even = r1.even; (* still O(n) *)

 odd = (fun i -> i % 2 == 1)

 } in r

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 17

More on late-binding

Late-binding, dynamic-dispatch, and open-recursion all related
issues (nearly synonyms)

The simplest example I know:

class C1 {

 int even(int i) { i=0 || odd (i-1)) }

 int odd(int i) { i!=0 && even (i-1)) }

}

class C2 extends C1 {

 // even is now O(1)

 int odd(int i) {i % 2 == 1}

}

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 18

The big debate

Open recursion:

• Code reuse: improve even by just changing odd

• Superclass has to do less extensibility planning

Closed recursion:

• Code abuse: break even by just breaking odd

• Superclass has to do more abstraction planning

Reality: Both have proved very useful; should probably just argue

over “the right default”

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 19

Our plan

• Dynamic dispatch is the essence of OOP

• How can we define/implement dynamic dispatch?

– Basics, not super-optimized versions (see P501)

• How do we use/misuse overriding?

– Functional vs. OOP extensibility

– Revenge of binary methods

• Types for objects

– Our prior study of subtyping mostly suffices

– Subclasses vs. subtypes

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 20

Defining dispatch

Methods “compile down” to functions taking self as an extra
argument

– Just need self bound to “the right thing”

Approach #1:

• Each object has 1 “code pointer” per method

• For new C() where C extends D:

– Start with code pointers for D (recursive definition!)

– If C adds m, add code pointer for m

– If C overrides m, change code pointer for m

• self bound to the (whole) object in method body

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 21

Defining dispatch

Methods “compile down” to functions taking self as an extra

argument

– Just need self bound to “the right thing”

Approach #2:

• Each object has 1 run-time tag

• For new C() where C extends D:

– Tag is C

• self bound to the object

• Method call to m reads tag, looks up (tag,m) in a global table

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 22

Which approach?

• The two approaches are very similar

– Just trade space for time via indirection

• vtable pointers are a fast encoding of approach #2

• This “definition” is low-level, but with overriding, simpler models

are probably wrong

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 23

Our plan

• Dynamic dispatch is the essence of OOP

• How can we define/implement dynamic dispatch?

– Basics, not super-optimized versions (see P501)

• How do we use/misuse overriding?

– Functional vs. OOP extensibility

– Revenge of binary methods

• Types for objects

– Our prior study of subtyping mostly suffices

– Subclasses vs. subtypes

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 24

Overriding and hierarchy design

• Subclass writer decides what to override to modify behavior

– Often-claimed, unchecked style issue: overriding should

specialize behavior

• But superclass writer typically knows what will be overridden

• Leads to notion of abstract methods (must-override)

– Classes w/ abstract methods can’t be instantiated

– Does not add expressiveness

– Adds a static check

– C++ calls this “pure virtual”

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 25

Overriding for extensibility

class Exp { // a PL example; constructors omitted
 abstract Exp interp(Env);
 abstract Typ typecheck(Ctxt);
 abstract Int toInt();
}
class IntExp extends Exp {
 Int i;
 Value interp(Env e) { self }
 Typ typecheck(Ctxt c) { new IntTyp() }
 Int toInt() { i }
}
class AddExp extends Exp {
 Exp e1; Exp e2;
 Value interp(Env e) {
 new IntExp(e1.interp(e).toInt().add(
 e2.interp(e).toInt())) }
 Int toInt() { throw new BadCall() }
 // typecheck on next page
}

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 26

Example cont’d

• We did addition with “pure objects”

– Int has a binary add method

• To do AddExp::typecheck the same way, assume equals is

defined appropriately (structural on Typ):

Type typecheck(Ctxt c) {

 e1.typecheck(c).equals(new IntTyp()).ifThenElse(

 e2.typecheck(c).equals(new IntTyp()).ifThenElse(

 (fun () -> new IntTyp()),

 (fun () -> throw new TypeError())),

 (fun () -> throw new TypeError()))

}

• Pure “OOP” avoids instanceof IntTyp and if-statements

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 27

More extension

• Now suppose we want MultExp

– No change to existing code, unlike OCaml!

– In OCaml, can “prepare” with “Else of ‘a” constructor
[not shown]

• Now suppose we want a toString method

– Must change all existing classes, unlike OCaml!

– In OOP, can “prepare” with a “Visitor pattern” [not shown]

• Extensibility has many dimensions – most require forethought!

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 28

The Grid

• You know it’s an important idea if I take the time to draw a

picture 

interp typecheck toString …

IntExp Code Code Code Code

AddExp Code Code Code Code

MultExp Code Code Code Code

… Code Code Code Code

1 new function

1 new class

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 29

Back to MultExp

• Even in OOP, MultExp is easy to add, but you’ll copy the

typecheck method of AddExp

• Or maybe MultExp extends AddExp, but that’s a kludge

• Or maybe refactor into BinaryExp with subclasses AddExp

and MultExp

– So much for not changing existing code

– Awfully heavyweight approach to a helper function

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 30

Our plan

• Dynamic dispatch is the essence of OOP

• How can we define/implement dynamic dispatch?

– Basics, not super-optimized versions (see P501)

• How do we use/misuse overriding?

– Functional vs. OOP extensibility

– Revenge of binary methods

• Types for objects

– Our prior study of subtyping mostly suffices

– Subclasses vs. subtypes

The equals mess

• Equals is very common and important (cf. Java, C#, …)

• But it’s a binary method and does not work well when combined

with subclassing and overriding

• Summarize an hour-long lecture (!!) in a sophomore-level course*

(CSE331) in the next 5 minutes…

• [Focus on Java, which I know better]

*It’s not the == vs. .equals lecture – that’s in an earlier course

Acknowledgments for slides 31-36: CSE331 instructors, particularly Michael D. Ernst

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 31

How equals should behave

Documented contract for subclasses of class Object is sensible:

“reflexive, symmetric, transitive” [and more, not shown here]

Reflexive a.equals(a) == true

– Confusing if an object does not equal itself

Symmetric a.equals(b)  b.equals(a)

– Confusing if order-of-arguments matters

Transitive a.equals(b)  b.equals(c)  a.equals(c)

– Confusing again to violate centuries of logical reasoning

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 32

Object.equals method

public class Object {

 public boolean equals(Object o) {

 return this == o;

 }

 …

}

• Implements reference equality

• Subclasses can override to implement a different equality

• But library includes a contract equals should satisfy

– Reference equality satisfies it

– So should any overriding implementation

– Balances flexibility in notion-implemented and what-clients-

can-assume even in presence of overriding

33 CSE P505 Autumn 2016 Dan Grossman Lecture 10

Correct overriding

public class Duration {

 public int min, sec;

 public boolean equals(Object o) {

 if(! o instanceof Duration)

 return false;

 Duration d = (Duration) o;

 return this.min==d.min && this.sec==d.sec;

 }

}

• Reflexive: Yes

• Symmetric: Yes, even if o is not a Duration!

– (Assuming o’s equals method satisfies the contract)

• Transitive: Yes, similar reasoning to symmetric

CSE P505 Autumn 2016 Dan Grossman 34 Lecture 10

But then you are stuck

• Only “correct” for the contract approach below is “ignore

nanoseconds”, which is probably not what you want

class NanoDuration extends Duration {
 public int nano;
 public NanoDuration(int min, int sec, int nano){
 super(min,sec);
 this.nano = nano;
 }
 public boolean equals(Object o) { ????? }
 …

}

• Any use of nanoseconds breaks symmetry or transitivity or both

– When comparing a mix of Duration and NanoDuration

• Can change Duration’s equals to be “false” for any subclass of

Duration, but that’s not what you want [for other subclasses]

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 35

The gotchas

CSE P505 Autumn 2016 Dan Grossman 36

Duration d1 = new NanoDuration(1, 2, 3);

Duration d2 = new Duration(1, 2);

Duration d3 = new NanoDuration(1, 2, 4);

d1.equals(d2);

d2.equals(d3);

d1.equals(d3);

NanoDuration

min

sec

nano

 1

 2

 3

Duration

min

sec

 1

 2

NanoDuration

min

sec

nano

 1

 2

 4

Lecture 10

Haskell’s Eq

• The Eq typeclass in Haskell has no such issues because it is

about polymorphism and overloading, not about subclassing

• (==) :: Eq a => a -> a -> Bool

• For example, the String instance provides a function

 (==) :: String -> String -> Bool

• You can (and probably should) program this way in OOP

– Recall “explicit dictionary”

– C++ says “functors” others say “function objects” or add

“good old lambdas”

– Caller passes in an a -> a -> Bool

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 37

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 38

Our plan

• Dynamic dispatch is the essence of OOP

• How can we define/implement dynamic dispatch?

– Basics, not super-optimized versions (see P501)

• How do we use/misuse overriding?

– Functional vs. OOP extensibility

– Revenge of binary methods

• Types for objects

– Our prior study of subtyping mostly suffices

– Subclasses vs. subtypes

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 39

Typechecking

Remember “my religion”:

 To talk about types, first discuss “what are we preventing”

1. In pure OOP, stuck if we need to interpret v.m(v1,…,vn) and

v has no m method (taking n args)

• “No such method” error

2. Also if ambiguous: multiple methods with same name and there

is no “best choice”

• “No best match” error

• Arises with static overloading and multimethods [omitted]

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 40

Subtyping

Most class-based OOP languages purposely “confuse” classes &

types

• If C is a class, then C is a type

• If C extends D (via declaration) then C ≤ D

• Subtyping is reflexive and transitive

Novel subtyping?

• New members in C “just” width subtyping

• “Nominal” (by name) instead of structural

• What about override…

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 41

Subtyping, continued

• If C extends D, overriding m, what do we need:

– Arguments contravariant (assume less)

– Result covariant (provide more)

• Many “real” languages are more restrictive

– Often in favor of static overloading

• Some languages (e.g., Eiffel, TypeScript) try to be more flexible

– At expense of run-time checks/casts

Good we studied this in a simpler setting!

– Little new to say – just “records of [immutable] methods”

The One Difference

• In the subclass’ override, the method can soundly assume self

is an instance of the subclass

• So self is like “an implicit argument” but unlike the other

arguments it is covariant

• This is sound because callers cannot “choose what self is”

– If they could, they could cast to supertype and pass a self

that is an instance of the supertype

• This “special treatment of ” is exactly why trying to “do OOP” in a

statically typed language without OOP support works poorly

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 42

class A {
 Int m1() { 42 }
}
class B extends A {
 Int x;
 Int m2() { 73 }
 Int m1() { x + m2() }
}

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 43

Subtyping vs. subclassing

• Often convenient confusion: C a subtype of D if and only if C a

subclass of D

• But more subtypes are sound

– If A has every field and method that B has (at appropriate

types), then subsume B to A

– Java-style interfaces help, but require explicit annotation

• And fewer subtypes could allow more code reuse…

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 44

Non-subtyping example

Pt2 ≤ Pt1 is unsound here:

class Pt1 extends Object {

 int x;

 int get_x() { x }

 bool compare(Pt1 p){ p.get_x() == self.get_x() }

}

class Pt2 extends Pt1 {

 int y;

 int get_y() { y }

 bool compare(Pt2 p) { // override

 p.get_x() == self.get_x()

 && p.get_y() == self.get_y() }

}

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 45

What happened

• Could inherit code without being a subtype

• Cannot always do this

– what if get_x called self.compare with a Pt1

 Possible solutions:

– Re-typecheck get_x in subclass

– Use a really fancy type system

– Don’t override compare

• Moral: Not suggesting “subclassing not subtyping” is useful, but

the concepts of inheritance and subtyping are orthogonal

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 46

Now what?

• That’s basic class-based OOP

– Note: Not all OOPLs use classes

 (Javascript, Self, Cecil, …)

• Now I’d love to do some “fancy” stuff…

– Multiple inheritance; multiple interfaces

– Static overloading

– Multimethods

– Revenge of bounded polymorphism

… but we are out of time for the quarter!  

… so let’s wrap-up…

Victory Lap

A victory lap is an extra trip

around the track

– By the exhausted victors (us) 

Review course goals

– Slides from Introduction and Course-Motivation

Some big themes and perspectives

– Stuff for five years from now more than for the final

Do your course evaluations!!!

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 47

Thanks!

• To you! (On top of your day jobs!)

• To John! (On top of your research!)

• To “Caryl and the kids who managed 9 bedtimes without me” 

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 48

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 49

Course [incomplete] summary

• Functional programming, datatypes, modularity, etc.

• Defining languages is hard but worth it

– Interpretation vs. translation

– Inference rules vs. a PL for the metalanguage

• Features we investigated

– Mutable variables (and loops)

– Higher-order functions, scope

– Pairs and sums

– Continuations

– Monads

– Typeclasses

– Objects

• Types restrict programs (often a good thing (!) then

counterbalanced via flavors of polymorphism)

[Now a few slides unedited from Lecture 1 that probably make a lot

more sense now]

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 50

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 51

OCaml

• OCaml is an awesome, high-level language

• We’ll use a small core subset that is well-suited to manipulating
recursive data structures (like programs)

• Tutorial will demonstrate its mostly functional nature

– Most data immutable

– Recursion instead of loops

– Lots of passing/returning functions

• Again, will support F# as a fine alternative

Last Motivation: “Fan Mail”

This class has changed the way I think about programming - even if

I don’t get to use all of the concepts we explored in OCaml (I work

in C++ most of the time), understanding more of the theory makes

a tremendous difference to how I go about solving a problem.

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 52

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 53

Picking a language

Admittedly, semantics can be far down the priority list:

• What libraries are available?

• What do management, clients want?

• What is the de facto industry standard?

• What does my team already know?

• Who will I be able to recruit?

But:

• Nice thing about class: we get to ignore all that 

• Technology leaders affect the answers

• Sound reasoning about programs requires semantics

– Mission-critical code doesn’t “seem to be right”

– Blame: the compiler vendor or you?

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 54

Academic languages

Aren’t academic languages worthless?

• Yes: fewer jobs, less tool support, etc.

– But a lot has changed in the last decade

• No:

– Knowing them makes you a better programmer

– Java did not exist in 1993; what doesn’t exist now

– Eventual vindication (on the leading edge):

 garbage-collection, generics, function closures, iterators,
universal data format, … (what’s next?)

– We don’t conquer; we assimilate

• And get no credit (fine by me)

– Functional programming is “finally cool”-ish

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 55

“But I don’t do languages”

Aren’t languages somebody else’s problem?

• If you design an extensible software system or a non-trivial API,

you'll end up designing a (small?) programming language!

• Another view: A language is an API with few functions but

sophisticated data. Conversely, an interface is just a stupid

programming language…

[Now 1.5 more slides]

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 56

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 57

Penultimate slide

• We largely avoided:

– Subjective non-science (“I like curly braces”)

– Real-world issues (“cool libraries / tricks in language X”)

• Focused on:

– Concepts that almost every language has, including the next

fad that doesn’t exist yet

– Connections (objects and closures are different, but not

totally different)

– Reference implementations, not fast or industrial-strength

ones

– “Cool stuff” (e.g., Curry-Howard, laziness, …)

Lecture 10 CSE P505 Autumn 2016 Dan Grossman 58

Questions?

Questions?

About PL, the exam, life, etc.?

[Oh, and reminder: do your course evaluation by Sunday midnight!]

