
CSEP505: Programming Languages 

Lecture 10: Object-Oriented Programming; 

Course Wrap-Up 

Dan Grossman 

Autumn 2016 



Lecture 10 CSE P505 Autumn 2016  Dan Grossman 2 

Onto OOP 

Now let’s talk about (class-based) object-oriented programming 

• What’s different from what we have been doing 

– Boils down to one important thing 

• How do we define it (will stay informal) 

• Supporting extensibility 

• Some “issues” not handled well 

 

Won’t have time for: “more advanced OOP topics” 

– Multiple inheritance, static overloading, multimethods, … 

– I, at least, have “no regrets” about “making room for Haskell” 
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OOP the sales pitch 

OOP lets you: 

1. Build some extensible software concisely 

2. Exploit an intuitive analogy between interaction of physical 

entities and interaction of software pieces 

 

It also: 

• Raises tricky semantic and style issues worthy of careful PL 

study 

• Is more complicated than functions 

– Does not necessarily mean it’s worse 
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So what is OOP? 

OOP “looks like this” pseudocode, but what is the essence? 

class Pt1 extends Object { 

  int x; 

  int  get_x() { x } 

  unit set_x(int y) { self.x = y } 

  int  distance(Pt1 p) { p.get_x() – self.get_x() } 

  constructor() { x = 0 } 

} 
 

class Pt2 extends Pt1 { 

  int y; 

  int get_y() { y } 

  int get_x() { 34 + super.get_x() } 

  constructor() { super(); y = 0 } 

} 
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Class-based OOP 

 

In (pure) class-based OOP: 

1. Every value is an object 

2. Objects communicate via messages (handled by methods) 

3. Objects have their own [private] state 

4. Every object is an instance of a class 

5. A class describes its instances’ behavior 

 



Pure OOP 

• Can make “everything an object” (cf. Smalltalk, Ruby, …) 

– Just like “everything a function” or “everything a string” or … 

 

 

 

 

 

 

 

 

• Essentially identical to the lambda-calculus encoding of Booleans 

– Closures are just objects with one method, perhaps called 

“apply”, and a private field for the environment 
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class True extends Boolean { 

  myIf(x,y) { x.m() } 

} 

class False extends Boolean { 

  myIf(x,y) { y.m() } 

} 
 

e.myIf((new Object() { m() {…}), 

       (new Object() { m() {…})) 
 



Lecture 10 CSE P505 Autumn 2016  Dan Grossman 7 

OOP can mean many things 

Why is this approach such a popular way to structure software? 

• Implicit self/this ? 

• An ADT (private fields)? 

• Inheritance: method/field extension, method override? 

• Dynamic dispatch? 

• Subtyping? [will do types after the rest, like earlier in course] 

• All the above (plus constructor(s)) in one (class) definition 
 

Design question: Better to have small orthogonal features or one 

“do it all” feature? 
 

Anyway, let’s consider how “unique to OO” each is… 
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OOP as ADT-focused 

Fields, methods, constructors often have visibilities 

 

What code can invoke a member/access a field? 

• Methods of the same object? 

• Methods defined in same class? 

• Methods defined in a subclass? 

• Methods in another “boundary” (package, assembly, friend,  …) 

• Methods defined anywhere? 

 

Hiding concrete representation matters, in any paradigm 

– For simple examples, objects or modules work fine 

– But OOP struggles with binary methods… 

 



Simple Example 
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class IntStack { 

 … // fields 

  int  push(Int i) {…} 

  constructor() { …} 

  … 

} 
 

new IntStack().push(42); 

type int_stack 

val empty : int_stack 

val push : int -> 

           int_stack -> 

           int_stack 

   
 

push 42 empty 



Binary-Method Example 

A “bag” supporting “choose” an element uniformly at random 

 

 

 

 

 

 

 

 

• Various ML implementations work fine (e.g., use an int list) 

• Pure OOP implementation with private-to-object fields impossible 

– Fix: widen the interface (although clients shouldn’t use it) 
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class ChooseBag { 

 … // fields 

 constructor(Int i){…} 

 ChooseBag union    

     (ChooseBag that){…} 
 

 Int choose() {…} 

type choose_bag 

val single : int ->           

             choose_bag 

val union : choose_bag -> 

           choose_bag -> 

           choose_bag 

val choose : choose_bag -> 

            int 
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Inheritance & override 

Subclasses: 

• Inherit superclass’ members 

• Can override methods 

• Can use super calls 

 

Can we code this up in OCaml/F#/Haskell? 

• No because of field-name reuse and lack of subtyping 

– But ignoring that we can get close… 
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(More than) records of functions 

If OOP = functions + private state, we already have it 

– But it’s more (e.g., inheritance) 

type pt1 = {get_x    : unit -> int;  

            set_x    : int  -> unit;  

            distance : pt1  -> int}  

let pt1_constructor () = 

  let x = ref 0 in 

  let rec self = { 

   get_x    = (fun() -> !x); 

   set_x    = (fun y -> x := y); 

   distance = (fun p -> p.get_x() +self.get_x()) 

  } in  

  self 
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Almost OOP? 

let pt1_constructor () = 

 let x = ref 0 in 

  let rec self = { 

    get_x    = (fun() -> !x); 

    set_x    = (fun y -> x := y); 

    distance = (fun p -> p.get_x()+self.get_x()) 

  } in self 

(* note: field reuse precludes type-checking *) 

let pt2_constructor () = (* extends Pt1 *) 

  let r = pt1_constructor () in 

  let y = ref 0 in 

  let rec self = { 

    get_x    = (fun() -> 34 + r.get_x()); 

    set_x    = r.set_x; 

    distance = r.distance; 

    get_y    = (fun() -> !y); 

  } in self 
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Problems 

Small problems: 

• Have to change pt2_constructor whenever 
pt1_constructor changes 
 

• But OOPs have tons of “fragile base class” issues too 

– Motivates C#’s version support 
 

• No direct access to “private fields” of superclass 
 

Big problem: 

• Distance method in a pt2 doesn’t behave how it does in OOP 

• We do not have late-binding of self (i.e., dynamic dispatch) 
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The essence 

Claims so far:  

 

Class-based objects are: 

• So-so ADTs 

• Some syntactic sugar for extension and override 

 

And: 

• The essence of OOP (versus records of closures) is a 
fundamentally different rule for what self maps to in the 

environment 
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More on late-binding 

Late-binding, dynamic-dispatch, and open-recursion are all 
essentially synonyms 

The simplest example I know: 

let c1 () = 

  let rec r = {  

    even = (fun i -> i=0  || r.odd (i-1)); 

    odd  = (fun i -> i<>0 && r.even (i-1)) 

  } in r 

 

let c2 () = 

  let r1 = c1 () in 

  let rec r = {  

    even = r1.even; (* still O(n) *) 

    odd  = (fun i -> i % 2 == 1) 

  } in r 
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More on late-binding 

Late-binding, dynamic-dispatch, and open-recursion all related 
issues (nearly synonyms) 

The simplest example I know: 

class C1 { 

  int even(int i) { i=0  || odd  (i-1)) } 

  int odd(int i)  { i!=0 && even (i-1)) } 

} 

 

class C2 extends C1 { 

  // even is now O(1) 

  int odd(int i) {i % 2 == 1} 

} 
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The big debate 

Open recursion: 

• Code reuse: improve even by just changing odd 

• Superclass has to do less extensibility planning 

 

Closed recursion: 

• Code abuse: break even by just breaking odd 

• Superclass has to do more abstraction planning 

 

Reality: Both have proved very useful; should probably just argue 

over “the right default” 
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Our plan 

• Dynamic dispatch is the essence of OOP 

 

• How can we define/implement dynamic dispatch? 

– Basics, not super-optimized versions (see P501) 

 

• How do we use/misuse overriding? 

– Functional vs. OOP extensibility 

– Revenge of binary methods 

 

• Types for objects 

– Our prior study of subtyping mostly suffices 

– Subclasses vs. subtypes 
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Defining dispatch 

Methods “compile down” to functions taking self as an extra 
argument 

– Just need self bound to “the right thing” 
 

Approach #1:  

• Each object has 1 “code pointer” per method 

• For new C() where C extends D: 

– Start with code pointers for D (recursive definition!) 

– If C adds m, add code pointer for m 

– If C overrides m, change code pointer for m 

• self bound to the (whole) object in method body 
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Defining dispatch 

Methods “compile down” to functions taking self as an extra 

argument 

– Just need self bound to “the right thing” 
 

Approach #2:  

• Each object has 1 run-time tag 

• For new C() where C extends D: 

– Tag is C 

• self bound to the object 

• Method call to m reads tag, looks up (tag,m) in a global table 
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Which approach? 

• The two approaches are very similar 

– Just trade space for time via indirection 

 

• vtable pointers are a fast encoding of approach #2 

 

• This “definition” is low-level, but with overriding, simpler models 

are probably wrong 
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Our plan 

• Dynamic dispatch is the essence of OOP 

 

• How can we define/implement dynamic dispatch? 

– Basics, not super-optimized versions (see P501) 

 

• How do we use/misuse overriding? 

– Functional vs. OOP extensibility 

– Revenge of binary methods 

 

• Types for objects 

– Our prior study of subtyping mostly suffices 

– Subclasses vs. subtypes 
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Overriding and hierarchy design 

• Subclass writer decides what to override to modify behavior 

– Often-claimed, unchecked style issue: overriding should 

specialize behavior 

• But superclass writer typically knows what will be overridden 

 

• Leads to notion of abstract methods (must-override)  

– Classes w/ abstract methods can’t be instantiated 

– Does not add expressiveness 

– Adds a static check 

– C++ calls this “pure virtual” 
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Overriding for extensibility 

class Exp { // a PL example; constructors omitted 
 abstract Exp interp(Env); 
 abstract Typ typecheck(Ctxt); 
 abstract Int toInt();  
} 
class IntExp extends Exp { 
 Int i; 
 Value interp(Env e) { self } 
 Typ typecheck(Ctxt c) { new IntTyp() } 
 Int toInt() { i } 
} 
class AddExp extends Exp { 
 Exp e1; Exp e2; 
 Value interp(Env e) {  
   new IntExp(e1.interp(e).toInt().add(  
              e2.interp(e).toInt())) } 
 Int toInt() { throw new BadCall() } 
 // typecheck on next page 
} 
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Example cont’d 

• We did addition with “pure objects” 

– Int has a binary add method 

• To do AddExp::typecheck the same way, assume equals is 

defined appropriately (structural on Typ): 

Type typecheck(Ctxt c) {  

  e1.typecheck(c).equals(new IntTyp()).ifThenElse( 

  e2.typecheck(c).equals(new IntTyp()).ifThenElse( 

  (fun () -> new IntTyp()), 

  (fun () -> throw new TypeError())), 

  (fun () -> throw new TypeError())) 

} 

• Pure “OOP” avoids instanceof IntTyp and if-statements 



Lecture 10 CSE P505 Autumn 2016  Dan Grossman 27 

More extension 
 

• Now suppose we want MultExp 

– No change to existing code, unlike OCaml! 

– In OCaml, can “prepare” with “Else of ‘a” constructor         
[not shown] 

 

• Now suppose we want a toString method 

– Must change all existing classes, unlike OCaml! 

– In OOP, can “prepare” with a “Visitor pattern” [not shown] 

 

• Extensibility has many dimensions – most require forethought! 
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The Grid 

• You know it’s an important idea if I take the time to draw a 

picture  

interp typecheck toString … 

IntExp Code Code Code Code 

AddExp Code Code Code Code 

MultExp Code Code Code Code 

… Code Code Code Code 

1 new function 

1 new class 
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Back to MultExp 

• Even in OOP, MultExp is easy to add, but you’ll copy the 

typecheck method of AddExp 

• Or maybe MultExp extends AddExp, but that’s a kludge 

• Or maybe refactor into BinaryExp with subclasses AddExp 

and MultExp 

– So much for not changing existing code 

– Awfully heavyweight approach to a helper function 
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Our plan 

• Dynamic dispatch is the essence of OOP 

 

• How can we define/implement dynamic dispatch? 

– Basics, not super-optimized versions (see P501) 

 

• How do we use/misuse overriding? 

– Functional vs. OOP extensibility 

– Revenge of binary methods 

 

• Types for objects 

– Our prior study of subtyping mostly suffices 

– Subclasses vs. subtypes 



The equals mess 

• Equals is very common and important (cf. Java, C#, …) 

 

• But it’s a binary method and does not work well when combined 

with subclassing and overriding 

 

• Summarize an hour-long lecture (!!) in a sophomore-level course* 

(CSE331) in the next 5 minutes… 

 

• [Focus on Java, which I know better] 

 

*It’s not the == vs. .equals lecture – that’s in an earlier course 

 

Acknowledgments for slides 31-36: CSE331 instructors, particularly Michael D. Ernst 
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How equals should behave 

Documented contract for subclasses of class Object is sensible: 

“reflexive, symmetric, transitive” [and more, not shown here] 

 

Reflexive a.equals(a) ==  true 

– Confusing if an object does not equal itself 

 

Symmetric a.equals(b)  b.equals(a) 

– Confusing if order-of-arguments matters 

 

Transitive a.equals(b)  b.equals(c)  a.equals(c) 

– Confusing again to violate centuries of logical reasoning 
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Object.equals method 

public class Object { 

  public boolean equals(Object o) { 

    return this == o; 

  } 

  … 

} 
 

• Implements reference equality 

• Subclasses can override to implement a different equality 

• But library includes a contract equals should satisfy 

– Reference equality satisfies it 

– So should any overriding implementation 

– Balances flexibility in notion-implemented and what-clients-

can-assume even in presence of overriding 
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Correct overriding 

public class Duration { 

   public int min, sec; 

   public boolean equals(Object o) { 

      if(! o instanceof Duration) 

        return false; 

      Duration d = (Duration) o; 

    return this.min==d.min && this.sec==d.sec; 

 } 

} 

• Reflexive: Yes 

• Symmetric: Yes, even if o is not a Duration! 

– (Assuming o’s equals method satisfies the contract) 

• Transitive: Yes, similar reasoning to symmetric 
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But then you are stuck 

• Only “correct” for the contract approach below is “ignore 

nanoseconds”, which is probably not what you want 
 

class NanoDuration extends Duration { 
  public int nano; 
  public NanoDuration(int min, int sec, int nano){ 
    super(min,sec); 
    this.nano = nano; 
  } 
  public boolean equals(Object o) { ????? } 
  … 

} 

• Any use of nanoseconds breaks symmetry or transitivity or both 

– When comparing a mix of Duration and NanoDuration 

• Can change Duration’s equals to be “false” for any subclass of 

Duration, but that’s not what you want [for other subclasses] 
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The gotchas 
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Duration d1 = new NanoDuration(1, 2, 3); 

Duration d2 = new Duration(1, 2); 

Duration d3 = new NanoDuration(1, 2, 4); 

d1.equals(d2);  

d2.equals(d3);  

d1.equals(d3);  

 

NanoDuration 

min 

sec 

nano 

 1 

  2 

    3 

Duration 

min 

sec 

 1 

  2 

NanoDuration 

min 

sec 

nano 

 1 

  2 

    4 

Lecture 10 



Haskell’s Eq 

• The Eq typeclass in Haskell has no such issues because it is 

about polymorphism and overloading, not about subclassing 

 

• (==) :: Eq a => a -> a -> Bool 

 

• For example, the String instance provides a function    

     (==) :: String -> String -> Bool 

 

• You can (and probably should) program this way in OOP 

– Recall “explicit dictionary” 

– C++ says “functors” others say “function objects” or add 

“good old lambdas” 

– Caller passes in an a -> a -> Bool 
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Our plan 

• Dynamic dispatch is the essence of OOP 

 

• How can we define/implement dynamic dispatch? 

– Basics, not super-optimized versions (see P501) 

 

• How do we use/misuse overriding? 

– Functional vs. OOP extensibility 

– Revenge of binary methods 

 

• Types for objects 

– Our prior study of subtyping mostly suffices 

– Subclasses vs. subtypes 
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Typechecking 

Remember “my religion”: 
 

 To talk about types, first discuss “what are we preventing” 

 

1. In pure OOP, stuck if we need to interpret v.m(v1,…,vn) and 

v has no m method (taking n args) 

• “No such method” error 

 

2. Also if ambiguous: multiple methods with same name and there 

is no “best choice” 

• “No best match” error 

• Arises with static overloading and multimethods [omitted] 
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Subtyping 

Most class-based OOP languages purposely “confuse” classes & 

types  

• If C is a class, then C is a type 

• If C extends D (via declaration) then C ≤ D 

• Subtyping is reflexive and transitive 

 

Novel subtyping?  

• New members in C “just” width subtyping 

• “Nominal” (by name) instead of structural 

• What about override… 
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Subtyping, continued 

• If C extends D, overriding m, what do we need: 

– Arguments contravariant (assume less) 

– Result covariant (provide more) 

• Many “real” languages are more restrictive 

– Often in favor of static overloading 

• Some languages (e.g., Eiffel, TypeScript) try to be more flexible 

– At expense of run-time checks/casts 

 

Good we studied this in a simpler setting! 

– Little new to say – just “records of [immutable] methods” 



The One Difference 

• In the subclass’ override, the method can soundly assume self 

is an instance of the subclass 

 

 

 

 

 

• So self is like “an implicit argument” but unlike the other 

arguments it is covariant 

• This is sound because callers cannot “choose what self is” 

– If they could, they could cast to supertype and pass a self 

that is an instance of the supertype 

• This “special treatment of ” is exactly why trying to “do OOP” in a 

statically typed language without OOP support works poorly 
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class A {  
  Int m1() { 42 } 
} 
class B extends A { 
  Int x;  
  Int m2() { 73 } 
  Int m1() { x + m2() } 
} 
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Subtyping vs. subclassing 

• Often convenient confusion: C a subtype of D if and only if C a 

subclass of D 

 

• But more subtypes are sound 

– If A has every field and method that B has (at appropriate 

types), then subsume B to A 

– Java-style interfaces help, but require explicit annotation 

 

• And fewer subtypes could allow more code reuse… 
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Non-subtyping example 

Pt2 ≤ Pt1 is unsound here: 

class Pt1 extends Object { 

 int x; 

 int  get_x() { x } 

 bool compare(Pt1 p){ p.get_x() == self.get_x() } 

} 

class Pt2 extends Pt1 { 

 int y; 

 int  get_y() { y } 

 bool compare(Pt2 p) { // override 

      p.get_x() == self.get_x()  

   && p.get_y() == self.get_y() } 

} 
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What happened 

• Could inherit code without being a subtype 

• Cannot always do this  

– what if get_x called self.compare with a Pt1 

 Possible solutions: 

– Re-typecheck get_x in subclass 

– Use a really fancy type system 

– Don’t override compare 

 

• Moral: Not suggesting “subclassing not subtyping” is useful, but 

the concepts of inheritance and subtyping are orthogonal 
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Now what? 

• That’s basic class-based OOP 

– Note: Not all OOPLs use classes  

 (Javascript, Self, Cecil, …) 

 

• Now I’d love to do some “fancy” stuff… 

– Multiple inheritance; multiple interfaces 

– Static overloading 

– Multimethods 

– Revenge of bounded polymorphism 

 

… but we are out of time for the quarter!    

… so let’s wrap-up… 



Victory Lap 

A victory lap is an extra trip  

around the track  

– By the exhausted victors  (us)  

 

Review course goals 

– Slides from Introduction and Course-Motivation 

 

Some big themes and perspectives 

– Stuff for five years from now more than for the final 

 

Do your course evaluations!!! 
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Thanks! 

 

• To you!  (On top of your day jobs!) 

 

• To John! (On top of your research!) 

 

• To “Caryl and the kids who managed 9 bedtimes without me”  

Lecture 10 CSE P505 Autumn 2016  Dan Grossman 48 



Lecture 10 CSE P505 Autumn 2016  Dan Grossman 49 

Course [incomplete] summary 

• Functional programming, datatypes, modularity, etc. 

• Defining languages is hard but worth it 

– Interpretation vs. translation 

– Inference rules vs. a PL for the metalanguage 

• Features we investigated 

– Mutable variables (and loops) 

– Higher-order functions, scope 

– Pairs and sums 

– Continuations 

– Monads 

– Typeclasses 

– Objects 

• Types restrict programs (often a good thing (!) then 

counterbalanced via flavors of polymorphism) 



 

 

 

[Now a few slides unedited from Lecture 1 that probably make a lot 

more sense now] 

Lecture 10 CSE P505 Autumn 2016  Dan Grossman 50 



Lecture 1 CSE P505 Autumn 2016  Dan Grossman 51 

OCaml 

• OCaml is an awesome, high-level language 

 

• We’ll use a small core subset that is well-suited to manipulating 
recursive data structures (like programs) 

 

• Tutorial will demonstrate its mostly functional nature 

– Most data immutable 

– Recursion instead of loops 

– Lots of passing/returning functions 

 

• Again, will support F# as a fine alternative 



Last Motivation: “Fan Mail” 

 

This class has changed the way I think about programming - even if 

I don’t get to use all of the concepts we explored in OCaml (I work 

in C++ most of the time), understanding more of the theory makes 

a tremendous difference to how I go about solving a problem. 

 

Lecture 1 CSE P505 Autumn 2016  Dan Grossman 52 



Lecture 1 CSE P505 Autumn 2016  Dan Grossman 53 

Picking a language 

Admittedly, semantics can be far down the priority list: 

• What libraries are available? 

• What do management, clients want? 

• What is the de facto industry standard? 

• What does my team already know? 

• Who will I be able to recruit? 

 

But: 

• Nice thing about class: we get to ignore all that  

• Technology leaders affect the answers 

• Sound reasoning about programs requires semantics 

– Mission-critical code doesn’t “seem to be right” 

– Blame: the compiler vendor or you? 
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Academic languages 

Aren’t academic languages worthless? 
 

• Yes: fewer jobs, less tool support, etc. 

– But a lot has changed in the last decade 
 

• No: 

– Knowing them makes you a better programmer 

– Java did not exist in 1993; what doesn’t exist now 

– Eventual vindication (on the leading edge):  

 garbage-collection, generics, function closures, iterators, 
universal data format, … (what’s next?) 

– We don’t conquer; we assimilate 

• And get no credit (fine by me) 

– Functional programming is “finally cool”-ish 
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“But I don’t do languages” 

Aren’t languages somebody else’s problem? 

 

• If you design an extensible software system or a non-trivial API, 

you'll end up designing a (small?) programming language! 

 

• Another view: A language is an API with few functions but 

sophisticated data.  Conversely,  an interface is just a stupid 

programming language… 

 



 

 

 

 

[Now 1.5 more slides] 
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Penultimate slide 

• We largely avoided: 

– Subjective non-science (“I like curly braces”) 

– Real-world issues (“cool libraries / tricks  in language X”) 
 

• Focused on: 

– Concepts that almost every language has, including the next 

fad that doesn’t exist yet 

– Connections (objects and closures are different, but not 

totally different) 

– Reference implementations, not fast or industrial-strength 

ones 

– “Cool stuff” (e.g., Curry-Howard, laziness, …) 
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Questions? 

 

 

 

Questions? 

 

About PL, the exam, life, etc.? 

 

 

[Oh, and reminder: do your course evaluation by Sunday midnight!] 


