
CSEP505: Programming Languages

Lecture 1: Intro; OCaml; Functional Programming

Dan Grossman

Autumn 2016

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 2

Welcome!

10 weeks for key programming-language concepts

– Focus on the universal foundations

Today:

1. Staff introduction; course mechanics

2. Why and how to study programming languages

3. OCaml and functional-programming tutorial

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 3

Hello, my name is…

• Dan Grossman, djg@cs

• Faculty member researching programming languages

– Sometimes theory (math)

– Sometimes implementation (graphs)

– Sometimes design (important but hand-waving)

– Particularly, safe low-level languages, easier-to-use

concurrency, better type-checkers, other

• Approximately 0 years professional experience...

– …but I’ve done a lot of compiler hacking

• Father of two boys < 3 years old

• …

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 4

Course facts (overview)

• http://courses.cs.washington.edu/courses/csep505/16au/

• TA: John Toman, Ph.D. student advised by me

• Pre-course survey

• Homework 0 and Homework 1

• No textbook

• 5 homeworks

• OCaml/F#/Haskell

• Take-home final exam much later

Then onto actual course motivation and content

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 5

Course web page

• Read syllabus

– includes some advice

• Read advice for approaching homework

– Homework code is not industry code

– Functional programming is not imperative/OOP

• Course web page will have slides, code, homework,

programming resources, etc.

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 6

TA

John

• Knows his stuff 

• In general, email both of us with questions to reduce latency

• John will do the grading

• …?

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 7

Survey

• An optional, brief and extremely useful survey

• On the web page (Google form)

• Things like what you do and what your concerns are

• (Also helps me learn your names)

Homework 0

• Install software, edit file, compile, run

• Not worth any points, but highly recommended before next week

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 8

Homework 1

• A real homework

• Due in 2 weeks

– Will generally do every-other-week because Life.

– Encourage you to start for real before next week.

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 9

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 10

Wide background

• Homework 1 will likely demonstrate a wide range of background

– So some material will be simultaneously too remedial and

too advanced

– Still let me know (politely )

– “Challenge problems” help some

• Affect your grade, but only a little

• Speaking of background, no need for PMP/5th-year mutual fear

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 11

Segue to a sermon

• I’m here to teach the essential beauty of the foundations of

programming languages

• If you’re here because

– The other courses looked even worse

– You can get out of the house on Thursday nights

– “A Master’s degree” will get you a raise

then you risk taking “longcuts” and being miserable

• Advice: If you must be <100% engaged, try to wait as long as

possible – the material builds more than it seems

– Catching up is hard

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 12

No textbook

• There just isn’t a book that covers this stuff well

– And the classic research papers are too old to be readable

• Pierce book: Very good, with about 25% overlap with the course

• Many undergraduate-level books, none of which I’ve used or

liked

• O’Reilly book on OCaml is free (in English)

• Will post relevant recent papers as interesting optional reading

(rarely good for learning material)

• I do have videos from 2009, but I plan to change ~30% and I’ve

learned a lot since then

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 13

Homework

• 5 assignments

– Mostly OCaml/F# programming (some written answers)

• Probably one in Haskell

– Expect to learn as you do them

– “Not a lot of lines”

– Again, challenge problems are optional

• Do your own work, but feel free to discuss

– Do not look at other’s solutions

– But learning from each other is great

• OCaml vs. F#

– See also lots of detail on web page

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 14

Final exam

• Please do not panic about taking an exam

• Worth 2/7 of the course grade (2x 1 homework)

• Why an exam?

– Helps you learn material as the course goes on

– Helps you learn material as you study for it

• I’ll post a sample [much] later

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 15

OCaml

• OCaml is an awesome, high-level language

• We’ll use a small core subset that is well-suited to manipulating
recursive data structures (like programs)

• Tutorial will demonstrate its mostly functional nature

– Most data immutable

– Recursion instead of loops

– Lots of passing/returning functions

• Again, will support F# as a fine alternative

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 16

Welcome!

10 weeks for key programming-language concepts

– Focus on the universal foundations

Today:

1. Staff introduction; course mechanics

2. Why and how to study programming languages

3. OCaml and functional-programming tutorial

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 17

A question

• What’s the best kind of car?

• What’s the best kind of shoes?

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 18

An answer

Of course it depends on what you are doing

Programming languages have many goals, including making it

easy in your domain to:

• Write correct code

• Write fast code

• Write code fast

• Write large projects

• Interoperate

• …

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 19

Another question

• Aren’t all cars the same?

“4 wheels, a steering wheel, a brake – the rest is unimportant

details”

• Standards help

– Easy to build roads and rent a car

• But legacy issues dominate

– Why are cars the width they are?

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 20

Aren’t all PLs the same?

Almost every language is the same

• You can write any function from bit-string to bit-string (including

non-termination)

• All it takes is one loop and two infinitely-large integers

• Called the “Turing tarpit”

Yes: Certain fundamentals appear almost everywhere (variables,

abstraction, records, recursive definitions)

– Travel to learn more about where you’re from

– OCaml lets these essentials shine

• Like the DEC Alpha in computer architecture

No: Real differences at formal and informal levels

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 21

Picking a language

Admittedly, semantics can be far down the priority list:

• What libraries are available?

• What do management, clients want?

• What is the de facto industry standard?

• What does my team already know?

• Who will I be able to recruit?

But:

• Nice thing about class: we get to ignore all that 

• Technology leaders affect the answers

• Sound reasoning about programs requires semantics

– Mission-critical code doesn’t “seem to be right”

– Blame: the compiler vendor or you?

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 22

And some stuff is just cool

• We certainly should connect the theory in this course to real-
world programming issues

– Though maybe more later in the course after the basics

• But even if we don’t, some truths are so beautiful and
perspective-altering they are worth learning anyway

– Watching Hamlet should affect you

• Maybe very indirectly

• Maybe much later

• And maybe you need to re-watch it

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 23

Academic languages

Aren’t academic languages worthless?

• Yes: fewer jobs, less tool support, etc.

– But a lot has changed in the last decade

• No:

– Knowing them makes you a better programmer

– Java did not exist in 1993; what doesn’t exist now

– Eventual vindication (on the leading edge):

 garbage-collection, generics, function closures, iterators,
universal data format, … (what’s next?)

– We don’t conquer; we assimilate

• And get no credit (fine by me)

– Functional programming is “finally cool”-ish

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 24

“But I don’t do languages”

Aren’t languages somebody else’s problem?

• If you design an extensible software system or a non-trivial API,

you'll end up designing a (small?) programming language!

• Another view: A language is an API with few functions but

sophisticated data. Conversely, an interface is just a stupid

programming language…

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 25

Our API…

type source_prog

type object_prog

type answer

val evaluate : source_prog -> answer

val typecheck : source_prog -> bool

val translate : source_prog -> object_prog

90+% of the course is defining this interface

It is difficult but really elegant (core computer science)

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 26

Summary so far

• We will study the definition of programming languages very
precisely, because it matters

• There is no best language, but lots of similarities among
languages

• “Academic” languages make this study easier and more
forward-looking

• “A good language” is not always “the right language” but we will
pretend it is

• APIs evolve into programming languages

– Learn to specify all your corner cases via elegant
composition

Last Motivation: “Fan Mail”

Today I had to do some work with a minimal browser shell around

Internet Explorer (for work), and found that I didn't have my usual

Javascript debugging tools. So I tried to write a small "immediate

window" for Javascript so I could conveniently execute commands.

I started off knowing I'd probably use some eval(), but only a little

while in, I realized the naive approach wasn't going to work,

because eval() does its evaluation in the current context… [snip] I

eventually got it to work using some eval tricks and some closure

tricks. I am 100% sure that if I had not taken your mind-bending

class, there's no way I could have figured this out, so I wanted to

share it with you.

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 27

Last Motivation: “Fan Mail”

I was starting my first week at Google, all fresh-faced and eager to

impress. As a the newest employee on the team, my co-workers

gave me the task of sanity-checking the newly written Dart

language spec (and it would be a good way to introduce me to the

language). The specification was filled with operational and

denotational semantics, and thanks to what I learned in 505 I was

able to reasonably easily read through the document and get up to

speed on Dart!

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 28

Last Motivation: “Fan Mail”

Hi Dan, I've been meaning to get around to doing this, but I wanted

to tell you about the impact that your class had on me when I took it

back in 2008. I'm not exaggerating when I say that I've been

digesting it for the last six years and I've gone through the course

notes at least once a year. I continue to learn more and more as

time goes on.

The one thing I'd say is that it is immediately clear when you enter

industry that there are two types of programmers - ones that have a

basic understanding of PL fundamentals and ones that do not. The

conversations you'd have with each of these types are extremely

different. If someone lacks a basic understanding of PL, they're

much more likely to dogmatically adhere to patterns and practices

that are suboptimal or, more typically, just don't matter that much.

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 29

Last Motivation: “Fan Mail”

Long time, no see ;) I figured I'd drop you a line about the latest

project I've been working on for a few months: [snip]. I took [snip]

and added a streaming SQL layer on top. Finally, a chance to apply

my hard-won 505 knowledge to something out here in the so-called

"real world." I even had to pull out the Pierce book at one point.

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 30

Last Motivation: “Fan Mail”

I also wanted to mention that even though I was against the idea of

an exam before the quarter started, I thought your exam was fair

and even fun. It was stressful to study for, but I'm hopeful that the

concepts have sunk in better now than if I hadn't studied.

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 31

Last Motivation: “Fan Mail”

Dan, I just wanted to thank you for a truly mind-stretching

semester. I enjoyed it a lot; it was worth every penny (out of my

own pocket).

You've given me insight and perspective on so many things.

I've even been caught twice now by my colleagues, speaking in

terms of, "well, that would depend on the intended semantics of the

programming language". :)

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 32

Last Motivation: “Fan Mail”

I just came across continuations by accident while I was looking at

comparisons of lua with other languages. I completely forgot we

had gone over those in your class, and am beating myself up for

not using them *ALL THE TIME* in my code - they are awesome!

Why are languages the coolest?!

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 33

Last Motivation: “Fan Mail”

This class has changed the way I think about programming - even if

I don’t get to use all of the concepts we explored in OCaml (I work

in C++ most of the time), understanding more of the theory makes

a tremendous difference to how I go about solving a problem.

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 34

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 35

Welcome!

10 weeks for key programming-language concepts

– Focus on the universal foundations

Today:

1. Staff introduction; course mechanics

2. Why and how to study programming languages

3. OCaml and functional-programming tutorial

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 36

And now OCaml

• “Hello, World”, compiling, running, etc.

– Demo

• Tutorial on the language

– Mostly via demo but slides has similar/identical code

– Heavily skewed toward what we need to study PL

• Then use our new language to learn

– Functional programming

– Idioms using higher-order functions

– Benefits of not mutating variables

• Then use OCaml to define other (made-up) languages

– Probably next week?

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 37

Advice

Listen to how I describe the language

Let go of what you know:

do not try to relate everything back to YFL

(We’ll have plenty of time for that later)

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 38

Hello, World!

(* our first program *)

let x = print_string “Hello, World!\n”

• A program is a sequence of bindings

• One kind of binding is a variable binding

• Evaluation evaluates bindings in order

• To evaluate a variable binding:

– Evaluate the expression (right of =) in the environment

created by the previous bindings

– This produces a value

– Extend the (top-level) environment,

 binding the variable to the value

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 39

Some variations

let x = print_string “Hello, World!\n”

(*same as previous with nothing bound to ()*)

let _ = print_string “Hello, World!\n”

(*same w/ variables and infix concat function*)

let h = “Hello, ”

let w = “World!\n”

let _ = print_string (h ^ w)

(*function f: ignores its argument & prints*)

let f x = print_string (h ^ w)

(*so these both print (call is juxtapose)*)

let y1 = f 37

let y2 = f f (* pass function itself *)

(*but this does not - y1 bound to () *)

let y3 = y1

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 40

Compiling/running

ocamlc file.ml compile to bytecodes (put in

executable)

ocamlopt file.ml compile to native (1-5x faster,

no need in class)

ocamlc –i file.ml print types of all top-level

bindings (an interface)

ocaml read-eval-print loop (see

manual for directives)

ocamlprof, ocamldebug,

…

see the manual

(probably unnecessary)

• Later today(?): multiple files

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 41

Installing, learning

• Links from the web page:

– P505-specific instructions

– www.ocaml.org

– The on-line manual (fine reference)

– An on-line book (less of a reference)

• Contact us with install problems soon!

• Ask questions (we know the language, want to share)

– But 100 rapid-fire questions not the way to learn

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 42

Types

• Every expression has a type. So far:

int string unit t1->t2 ’a

(* print_string : string->unit, “…” : string *)

let x = print_string “Hello, World!\n”

(* x: unit *)

…

(* ^ : string->string->string *)

let f x = print_string (h ^ w)(* f : ’a -> unit *)

let y1 = f 37 (* y1 : unit *)

let y2 = f f (* y2 : unit *)

let y3 = y1 (* y3 : unit *)

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 43

Explicit types

• You (almost) never need to write down types

– But can help debug or document

– Can also constrain callers, e.g.:

let f x = print_string (h ^ w)

let g (x:int) = f x

let _ = g 37

let _ = g “hi” (*no typecheck, but f “hi” does*)

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 44

Theory break

Some terminology and pedantry to serve us well:

• Expressions are evaluated in an environment

• An environment maps variables to values

• Expressions are type-checked in a context

• A context maps variables to types

• Values are integers, strings, function-closures, …

– “things already evaluated”

• Constructs have evaluation rules (except values) and type-

checking rules

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 45

Recursion

• A let binding is not in scope for its expression, so:

let rec

(*smallest infinite loop*)

let rec forever x = forever x

(*factorial (if x>=0, parens necessary)*)

let rec fact x =

 if x==0 then 1 else x * (fact(x-1))

(*everything an expression, eg, if-then-else*)

let fact2 x =

 (if x==0 then 1 else x * (fact(x-1))) * 2 / 2

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 46

Locals

• Local variables and functions much like top-level ones

– with in keyword (optional in F#)

let quadruple x =

 let double y = y + y in

 let ans = double x + double x in

 ans

let _ =

print_string((string_of_int(quadruple 7)) ^ “\n”)

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 47

Anonymous functions

• Functions need not be bound to names

– In fact we can desugar what we have been doing

– Anonymous functions cannot be recursive

let quadruple2 x =

 (fun x -> x + x) x + (fun x -> x + x) x

let quadruple3 x =

 let double = fun x -> x + x in

 double x + double x

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 48

Passing functions
(* without sharing (shame) *)

print_string((string_of_int(quadruple 7)) ^ “\n”);

print_string((string_of_int(quadruple2 7)) ^ “\n”);

print_string((string_of_int(quadruple3 7)) ^ “\n”)

(* with “boring” sharing (fine here) *)

let print_i_nl i =

 print_string ((string_of_int i) ^ “\n”)

let _ = print_i_nl (quadruple 7);

 print_i_nl (quadruple2 7);

 print_i_nl (quadruple3 7)

(* passing functions instead *)

(*note 2-args and useful but unused polymorphism*)

let print_i_nl2 i f = print_i_nl (f i)

let _ = print_i_nl2 7 quadruple ;

 print_i_nl2 7 quadruple2;

 print_i_nl2 7 quadruple3

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 49

Multiple args, currying

• Inferior style (fine, but OCaml novice):

let print_on_seven f = print_i_nl2 7 f

• Partial application (elegant and addictive):

let print_on_seven = print_i_nl2 7

let print_i_nl2 i f = print_i_nl (f i)

• Makes no difference to callers:

let _ = print_on_seven quadruple ;

 print_on_seven quadruple2;

 print_on_seven quadruple3

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 50

Currying exposed

(* 2 ways to write the same thing *)

let print_i_nl2 i f = print_i_nl (f i)

let print_i_nl2 =

 fun i -> (fun f -> print_i_nl (f i))

(*print_i_nl2 : (int -> ((int -> int) -> unit))

 i.e., (int -> (int -> int) -> unit)

*)

(* 2 ways to write the same thing *)

print_i_nl2 7 quadruple

(print_i_nl2 7) quadruple

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 51

Elegant generalization

• Partial application is just an idiom

– Every function takes exactly one argument

– Call (application) “associates to the left”

– Function types “associate to the right”

• Using functions to simulate multiple arguments is called currying

(somebody’s name)

• OCaml implementation plays cool tricks so full application is

efficient (merges n calls into 1)

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 52

Closures

Static (a.k.a. lexical) scope; a really big idea

let y = 5

let return11 = (* unit -> int *)

 let x = 6 in

 fun () -> x + y

let y = 7

let x = 8

let _ = print_i_nl (return11 ()) (*prints 11!*)

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 53

The semantics

A function call e1 e2:

1. evaluates e1, e2 to values v1, v2 (order undefined) where v1

is a function with argument x, body e3

2. Evaluates e3 in the environment where v1 was defined,

extended to map x to v2

Equivalent description:

• A function fun x -> e evaluates to a triple of x, e, and the

current environment

– Triple called a closure

• Call evaluates closure’s body in closure’s environment extended
to map x to v2

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 54

Closures are closed

return11 is bound to a value v

• All you can do with this value is call it (with ())

• It will always return 11

– Which environment is not determined by caller

– The environment contents are immutable

• let return11 () = 11

 guaranteed not to change the program

let y = 5

let return11 = (* unit -> int *)

 let x = 6 in

 fun () -> x + y

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 55

Another example

let x = 9

let f () = x+1

let x = x+1

let g () = x+1

let _ = print_i_nl (f() + g())

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 56

Mutation exists

There is a built-in type for mutable locations that can be read and

assigned to:

let x = ref 9

let f () = (!x)+1

let _ = x := (!x)+1

let g () = (!x)+1

let _ = print_i_nl (f() + g())

While sometimes awkward to avoid, need it much less often than

you think (and it leads to sadness)

On homework, do not use mutation unless we say

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 57

Summary so far

• Bindings (top-level and local)

• Functions

– Recursion

– Currying

– Closures (compelling uses next time)

• Types

– “base” types (unit, int, string, bool, …)

– Function types

– Type variables

Now: compound data

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 58

Record types

type int_pair = {first : int; second : int}

let sum_int_pr x = x.first + x.second

let pr1 = {first = 3; second = 4}

let _ = sum_int_pr pr1

 + sum_int_pr {first=5;second=6}

A type constructor for polymorphic data/code:

type ’a pair = {a_first : ’a; a_second : ’a}

let sum_pr f x = f x.a_first + f x.a_second

let pr2 = {a_first = 3; a_second = 4}(*int pair*)

let _ = sum_int_pr pr1

 + sum_pr (fun x->x) {a_first=5;a_second=6}

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 59

More polymorphic code

type ’a pair = {a_first : ’a; a_second : ’a}

let sum_pr f x = f x.a_first + f x.a_second

let pr2 = {a_first = 3; a_second = 4}

let pr3 = {a_first = “hi”; a_second = “mom”}

let pr4 = {a_first = pr2; a_second = pr2}

let sum_int = sum_pr (fun x -> x)

let sum_str = sum_pr String.length

let sum_int_pair = sum_pr sum_int

let _ = print_i_nl (sum_int pr2)

let _ = print_i_nl (sum_str pr3)

let _ = print_i_nl (sum_int_pair pr4)

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 60

Each-of vs. one-of

• Records build new types via “each of” existing types

• Also need new types via “one of” existing types

– Subclasses in OOP

– Enums or unions (with tags) in C

• Caml does this directly; the tags are constructors

– Type is called a datatype

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 61

Datatypes

type food = Foo of int | Bar of int_pair

 | Baz of int * int | Quux

let foo3 = Foo (1 + 2)

let bar12 = Bar pr1

let baz1_120 = Baz(1,fact 5)

let quux = Quux (* not much point in this *)

let is_a_foo x =

 match x with (* better than “downcasts” *)

 Foo i -> true

 | Bar pr -> false

 | Baz(i,j) -> false

 | Quux -> false

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 62

Datatypes

• Syntax note: Constructors capitalized, variables not

• Use constructor to make a value of the type

• Use pattern-matching to use a value of the type

– Only way to do it

– Pattern-matching actually much more powerful

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 63

Booleans revealed

Predefined datatype (violating capitalization rules ):

type bool = true | false

if is just sugar for match (but better style):

– if e1 then e2 else e3

– match e1 with

 true -> e2

 | false -> e3

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 64

Recursive types

A datatype can be recursive, allowing data structures of unbounded

size

And it can be polymorphic, just like records

type int_tree = Leaf

 | Node of int * int_tree * int_tree

type ’a lst = Null

 | Cons of ’a * ’a lst

let lst1 = Cons(3,Null)

let lst2 = Cons(1,Cons(2,lst1))

(* let lst_bad = Cons("hi",lst2) *)

let lst3 = Cons("hi",Cons("mom",Null))

let lst4 = Cons (Cons (3,Null),

 Cons (Cons (4,Null), Null))

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 65

Recursive functions

type ’a lst = Null

 | Cons of ’a * ’a lst

let rec len lst = (* ’a lst -> int *)

 match lst with

 Null -> 0

 | Cons(x,rest) -> 1 + len rest

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 66

Recursive functions

type ’a lst = Null

 | Cons of ’a * ’a lst

let rec sum lst = (* int lst -> int *)

 match lst with

 Null -> 0

 | Cons(x,rest) -> x + sum rest

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 67

Recursive functions

type ’a lst = Null

 | Cons of ’a * ’a lst

let rec append lst1 lst2 =

(* ’a lst -> ’a lst -> ’a lst *)

 match lst1 with

 Null -> lst2

 | Cons(x,rest) -> Cons(x, append rest lst2)

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 68

Another built-in

Actually the type ’a list is built-in:

• Null is written []

• Cons(x,y) is written x::y

• Sugar for list literals [5; 6; 7]

let rec append lst1 lst2 = (* built-in infix @ *)

 match lst1 with

 [] -> lst2

 | x::rest -> x :: (append rest lst2)

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 69

Summary

• Now we really have it all

– Recursive higher-order functions

– Records

– Recursive datatypes

• Some important odds and ends

– Standard-library

– Common higher-order function idioms

– Tuples

– Nested patterns

– Exceptions

• Then (simple) modules

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 70

Standard library

• Values (e.g., functions) bound to foo in module M are accessed

via M.foo

• Standard library organized into modules

• For Homework 1, will use List, String, and Char

– Mostly List, for example, List.fold_left

– And we point you to the useful functions

• Standard library a mix of “primitives” (e.g., String.length)

and useful helpers written in Caml (e.g., List.fold_left)

• Pervasives is a module implicitly “opened”

• F# differs the most here:

– Different function names

– Sometimes more OO

– No Pervasives

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 71

Higher-order functions

let rec mymap f lst =

 match lst with

 [] -> []

 | hd::tl -> (f hd)::(mymap f tl)

let lst234 = mymap (fun x -> x+1) [1;2;3]

let lst345 = List.map (fun x -> x+1) [1;2;3]

let incr_list = mymap (fun x -> x+1)

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 72

Tuples

Defining record types all the time is unnecessary:

• Types: t1 * t2 * … * tn

• Construct tuples e1,e2,…,en

• Get elements with pattern-matching x1,x2,…,xn

• Advice: use parentheses!

let x = (3,"hi",(fun x -> x), fun x -> x ^ "ism")

let z =

 match x with (i,s,f1,f2) -> f1 i (*poor style *)

let z = (let (i,s,f1,f2) = x in f1 i)

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 73

Pattern-matching revealed

• You can pattern-match anything

– Only way to access datatypes and tuples

– A variable or _ matches anything

– Patterns can nest

– Patterns can include constants (3, “hi”, …)

• Patterns are not expressions, though syntactically a subset

– Plus some bells/whistles (as-patterns, or-patterns)

• Exhaustiveness and redundancy checking at compile-time!

• let can have patterns, just sugar for one-branch match!

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 74

Fancy patterns example

type sign = P | N | Z

let multsign x1 x2 =

 let sign x =

 if x>0 then (if x=0 then Z else P) else N

 in

 match (sign x1,sign x2) with

 (P,P) -> P

 | (N,N) -> N

 | (Z,_) -> Z

 | (_,Z) -> Z

 | _ -> N (* many say bad style! *)

To avoid overlap, two more cases (more robust if type changes)

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 75

Fancy patterns example (and exns)

exception ZipLengthMismatch

let rec zip3 lst1 lst2 lst3 =

 match (lst1,lst2,lst3) with

 ([],[],[]) -> []

 | (hd1::tl1,hd2::tl2,hd3::tl3) ->

 (hd1,hd2,hd3)::(zip3 tl1 tl2 tl3)

 | _ -> raise ZipLengthMismatch

’a list -> ’b list -> ’c list -> (’a*’b*’c) list

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 76

Pattern-matching in general

• Full definition of matching is recursive

– Over a value and a pattern

– Produce a binding list or fail

– You implement a simple version in homework 1

• Example:

 (p1,p2,p3) matches (v1,v2,v3)

 if pi matches vi for 1<=i<=3

– Binding list is 3 subresults appended together

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 77

“Quiz”

What is

let f x y = x + y

let f pr = (match pr with (x,y) -> x+y)

let f (x,y) = x + y

let f (x1,y1) (x2,y2) = x1 + y2

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 78

Exceptions

See the manual for:

• Exceptions that carry values

– Much like datatypes but extends exn

• Catching exceptions

– try e1 with …

– Much like pattern-matching but cannot be exhaustive

• Exceptions are not hierarchical (unlike Java/C# subtyping)

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 79

Modules

• So far, only way to hide things is local let

– Not good for large programs

– Caml has a fancy module system, but we need only the

basics

• Modules and signatures give

– Namespace management

– Hiding of values and types

– Abstraction of types

– Separate type-checking and compilation

• By default, OCaml builds on the filesystem

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 80

Module pragmatics

• foo.ml defines module Foo

• Bar uses variable x, type t, constructor C in Foo via Foo.x,

Foo.t, Foo.C

– Can open a module, use sparingly

• foo.mli defines signature for module Foo

– Or “everything public” if no foo.mli

• Order matters (command-line)

– No forward references (long story)

– Program-evaluation order

• See manual for .cm[i,o] files, -c flag, etc.

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 81

Module example

type t1 = X1 of int

 | X2 of int

let get_int t =

 match t with

 X1 i -> i

 | X2 i -> i

type even = int

let makeEven i = i*2

let isEven1 i = true

(* isEven2 is “private” *)

let isEven2 i = (i mod 2)=0

(* choose to show *)

type t1 = X1 of int

 | X2 of int

val get_int : t1->int

(* choose to hide *)

type even

val makeEven : int->even

val isEven1 : even->bool

foo.ml: foo.mli:

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 82

Module example

type t1 = X1 of int

 | X2 of int

let conv1 t =

 match t with

 X1 i -> Foo.X1 i

 | X2 i -> Foo.X2 i

let conv2 t =

 match t with

 Foo.X1 i -> X1 i

 | Foo.X2 i -> X2 i

let _ =

 Foo.get_int(conv1(X1 17));

 Foo.isEven1(Foo.makeEven 17)

 (* Foo.isEven1 34 *)

(* choose to show *)

type t1 = X1 of int

 | X2 of int

val get_int : t1->int

(* choose to hide *)

type even

val makeEven : int->even

val isEven1 : even->bool

bar.ml: foo.mli:

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 83

Not the whole language

• Objects

• Loop forms (bleach)

• Fancy module stuff (e.g., functors)

• Polymorphic variants

• Mutable fields

• …

Just don’t need much of this for class

(nor do I use it much)

• May use floating-point, etc. (easy to pick up)

Lecture 1 CSE P505 Autumn 2016 Dan Grossman 84

Summary

• Done with OCaml tutorial

– Focus on “up to speed” while being precise

– Much of class will be more precise

• Next: functional-programming idioms

– Uses of higher-order functions (cf. objects)

– Tail recursion

– Life without mutation or loops

Will use OCaml but ideas are more general

• Then: On to implementing PLs and semantics

