
CSEP505 Programming Languages, Autumn 2016, Final Exam
December, 2016

Programming Languages for a World of Change

Rules:

• See http://courses.cs.washington.edu/courses/csep505/16au/exam_info.html.

• This is a take-home exam to be completed on your own.

• There are a total of 125 points spread unevenly among 10 questions, most with subparts.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit. But clearly indicate what
is your final answer.

• The questions are not necessarily in order of difficulty. You may wish to skip around. Make sure you
get to all the questions.

http://courses.cs.washington.edu/courses/csep505/16au/exam_info.html

Preamble (there is no question on this page):

The problems on this exam are all related in some way to U.S. coins — quarters, dimes, nickels, and pennies.
Assume no other coins exist (until the last problem as described there). The “money value” of a collection
of coins is the sum of the cents of all the coins with this “domain knowledge” that you surely already know:

coin name coin value in cents
penny 1
nickel 5
dime 10
quarter 25

This use of the phrase “money value” is not the same as the notion of “value” in our study of programming
languages. We will make this clear as needed in the questions that follow.

Most problems refer to either exam.ml or exam.hs, which you should look at to understand the question
and edit to provide your answer. As with our homeworks, we provide exam.fs as an alternative to exam.ml

but the differences are very minor.

1. (8 points) (OCaml Warmup)

In the space indicated in exam.ml, implement a function replace_pennies as follows:

• It should have type money -> money

(which is the same thing as int * int * int * int -> int * int * int * int).

• The result should have zero pennies.

• The result should have a money value less than or equal to the argument’s money value but
otherwise as large as possible.

• The result should have as few total coins as possible provided that the number of quarters does
not decrease, the number of dimes does not decrease, and the number of nickels does not decrease.

For example, replace_pennies (2,0,3,43) = (3,1,4,0).

Hints:

• In OCaml, the mod operator is mod. In F#, it is %.

• The sample solution is shorter than the description of it above.

2. (15 points) (Large-Step Interpreter)

exam.ml defines a type coin_exp for an expression language with various operations over values of type
money. Part of interp_large_coin_exp of type (string * money) list -> coin_exp -> money is
given to you. Complete this function to meet this description:

• A MoneyConst expression evaluates immediately to its money value. We disallow negative numbers
of coins. This case is given to you.

• As in IMP in class, we have variables that we look up in the heap. Using an undefined variable
raises an InterpFailure exception. (Not shown are statements that would create and assign to
such variables.) This case is given to you.

• A CombineMoney expression evaluates its two subexpressions and produces a money value that
has exactly all the coins produced by the two subexpressions (e.g., the number of dimes is the
sum of the dimes produced by the two subexpressions).

• A RemoveCoin expression evaluates its subexpression and then produces a result that has ex-
actly one less coin (the coin indicated by the second argument to RemoveCoin). However, if the
subexpression produces money that already has 0 of the coin-to-be-removed, an InterpFailure

exception should be raised.

• A HalfValue expression evaluates its subexpression then produces a result that has a subset of
the coins produced by the subexpression such that the money value of the subset is half as much.
If this is impossible, an InterpFailure exception should be raised. This case is given to you.

• A ReplacePennies expression evaluates its subexpression then produces a result that replaces all
pennies as in your solution to Problem 1. No exception can occur unless it occurs in the evaluation
of the subexpression.

3. (12 points) (Higher-Order Functions and CPS)

In exam.ml, the function all_coins_tree is provided to you.

(a) Implement penniless using a partial application of all_coins_tree. penniless should have
type money_tree -> bool and return true if and only if its argument contains no pennies.

(b) Implement all_coins_tree_cps of type
(coin -> bool) -> money_tree -> (bool -> bool) -> bool by converting all_coins_tree

to continuation-passing style. It is okay if all_coins_tree_cps “processes tree elements” in a
different order than all_coins_tree.

(c) Implement penniless2 to have the same type and functionality as penniless but implement it
by using all_coins_tree_cps (and not with partial application).

4. (18 points) (Formal Semantics)

Here is a formal semantics for our coin-expression language. Each inference rule has the form H; e ⇓
(q, d, n, p) where H is a heap, e is an expression and q, d, n, p are all numbers representing, as in OCaml,
the number of quarters, dimes, nickels, and pennies. Assume the Variable rule is correct even though
we leave undefined the exact meaning of H(x). Even so, some of the rules are not what we intend or
otherwise have differences from your interpreter written in OCaml.

constant
q ≥ 0 d ≥ 0 n ≥ 0 p ≥ 0

H;MoneyConst (q, d, n, p) ⇓ (q, d, n, p)

variable
H(x) = (q, d, n, p)

H;Var x ⇓ (q, d, n, p)

combine
H; e1 ⇓ (q, d, n, p) H; e2 ⇓ (q, d, n, p)

H;CombineMoney(e1, e2) ⇓ (q + q, d + d, n + n, p + p)

half
H; e ⇓ (q, d, n, p) 25q + 10d + 5n + p = 2(25q′ + 10d′ + 5n′ + p′)

H;HalfValue e ⇓ (q′, d′, n′, p′)

removeQ

H; e ⇓ (q, d, n, p) q > 0

H;RemoveCoin(e,Quarter) ⇓ (q − 1, d, n, p)

removeD
H; e ⇓ (q, d, n, p) d > 0

H;RemoveCoin(e,Dime) ⇓ (q, d− 1, n, p)

removeN
H; e ⇓ (q, d, n, p) n > 0

H;RemoveCoin(e,Nickel) ⇓ (q, d, n− 1, p)

removeP
H; e ⇓ (q, d, n, p) p > 0

H;RemoveCoin(e,Penny) ⇓ (q, d, n, p− 1)

replace
H; e ⇓ (q, d, n, p) 5n′ + x = p 0 ≤ x ≤ 4

H;ReplacePennies e ⇓ (q, d, n + n′, 0)

Give your answers to this problem in a text document of your choice. You can also do it on paper and
take a clear photograph of your answers if you prefer.

(a) One of the rules produces different results — it has the same “failure modes” as your interpreter
from Problem 2 and always produces one answer, but it does not always produce the same answer.
Explain in roughly 1 English sentence which rule and why it is different. Then give two example
expressions: one where the answers are the same here and in your interpreter and one where the
answers are different.

(b) One of the rules produces fewer results — when it gives an answer, that answer agrees with your
interpreter, but it gives answers in fewer situations. Explain in roughly 1 English sentence which
rule and why it is different. Then give two example expressions: one where the formal semantics
and your interpreter give answers and one where only your interpreter does.

(c) One of the rules can produce more results — it is nondeterministic where your interpreter is
deterministic. Explain in roughly 1 English sentence which rule and why it is different. Then give
a program where, thanks to this nondeterminism, the formal semantics can produce an answer
but your interpreter would raise an exception.

5. (23 points) (Type Checking)

exam.ml defines part of an unusual and fairly misguided type system for the language we imple-
mented in Problem 2. In this type system, each expression and variable is given a type of the form
even * even * even * even where type even = IsEven | MightNotBeEven. Note that IsEven de-
scribes (only) numbers that are definitely even numbers, which includes 0.

We suppose the purpose of this type system is to prevent well-typed programs from causing InterpFailure
exceptions from occurring when interpreted by interp_large_coin_exp, though the type system does
a poor job of this.

(a) Complete the definition of typecheck which has type
(string * coin_type) list -> coin_exp -> coin_type and which raises the exception
DoesNotTypecheck for expressions that should not type-check. Three cases are given to you; do
not change them. For the remaining cases:

• Do type-check subexpressions (of course) and/but do not use any more information about a
subexpression other than its type. For example, notice that with the provided code
typecheck [] (CombineMoney (MoneyConst (0,1,0,1),MoneyConst (0,1,1,1)))

= (IsEven,MightNotBeEven,MightNotBeEven,MightNotBeEven) even though it could be
determined “at compile time” that the number of dimes and pennies in the result is 2, which
is even.

• There is no IsOdd, so even if you “know” a value must be odd, you have no choice but to use
MightNotBeEven.

• HalfValue should require “knowing” that evaluating its subexpression will produce a result
where all components are even numbers.

• Other than the previous points above, give the “best types” (most uses of IsEven and fewest
uses of DoesNotTypecheck) you can.

(b) Give an example “program” of type coin_exp that demonstrates our “type system” is unsound
given its stated purpose above. Do not use Var (so your example will work for any environment
and heap).

(c) Give an example “program” of type coin_exp that demonstrates our “type system” is incomplete
given its stated purpose above. Do not use Var (so your example will work for any environment
and heap).

6. (11 points) (Subtyping and References)

This problem considers adding mutable references (like OCaml’s references) to our coin-expression
language as well as subtyping on top of the type system from the previous problem. This problem
should be done “in a text file” or similar (like Problem 4) since not all our additions will be “actually
implemented in OCaml”).

We make these additions:

• let-expressions of the form let x : t = e1 in e2, which are like in OCaml except we have an
explicit type t on the variable and we allow e1 to be a subtype of t.

• sequence-expressions e1; e2 (as in OCaml)

• Expressions for creating and using references as in OCaml:

– ref e to create a new reference initially containing the result of evaluating e

– !e to evaluate e to a reference and produce its current contents

– e1 := e2 to evaluate e1 to a reference and change its contents to the result of evaluating e2.

• Our type system now gives expressions and variables types that are defined by coin_type’ where:
type coin_type’ = MoneyType of coin_type | RefType of coin_type’ | UnitType

and coin_type was defined in Problem 5.

• Like in OCaml, for any type (i.e., coin_type’) t, the reference operations have these types:

– ref e has type RefType t if e has type t.

– !e has type t if e has type RefType t.

– e1 := e2 has type UnitType if e1 has type RefType t and e2 has type t.

We assume this (broken!) definition of subtyping:

let rec subtype_proposed t1 t2 =

let even_sub et1 et2 = (et1 = IsEven || et2 = MightNotBeEven) in

match (t1,t2) with

(MoneyType(qt1,dt1,nt1,pt1), MoneyType(qt2,dt2,nt2,pt2)) ->

List.for_all2 even_sub [qt1;dt1;nt1;pt1] [qt2;dt2;nt2;pt2]

| (RefType t1’, RefType t2’) -> subtype_proposed t1’ t2’

| (UnitType, UnitType) -> true

| _ -> false

With all that set-up, here (finally!) are the questions:

(a) Fill in the blanks below so that this program type-checks and causes an InterpFailure exception
when evaluated and relies on a “new” unsoundness caused by subtyping, not any unsoundness that
was already present. In other words, provide two types (the first two blanks) and two expressions
(the next two blanks) such that the program overall demonstrates a new cause of unsoundness.

let x : ______________ = ref (2,2,2,2) in

let y : ______________ = _____________ in

(_______________ ; HalfValue (!x))

(b) Explain in 1–3 English sentences how to change subtype_proposed to cause your answer to part
(a) and all analogous examples not to type-check. Be specific about how you would change the
subtype_proposed definition to fix it.

7. (6 points) (Haskell Warmup) In exam.hs, port from OCaml to Haskell the implementations of
all_coins_tree and penniless from Problem 3 such that they have types
(Coin -> Bool) -> MoneyTree -> Bool and MoneyTree -> Bool respectively.

Note we are not asking you to port all_coins_tree_cps nor penniless2 (though it’s not difficult).

8. (10 points) (Haskell IO)

Continue working in exam.hs:

(a) Implement n_times to take an IO action a and a number n and produce an IO action that, when
performed, performs a a total of n times (and ignores the results). Your function should have
type IO a -> Int -> IO () or a more general type. Assume n ≥ 0.

(b) Use n_times and the standard library’s putStr to implement printMoney :: Money -> IO (),
which should, given the value Money q d n p, produce an IO action that, when performed, be-
haves as follows:

• If q, d, n, and p are all 0, then it prints you’re broke!.

• Otherwise it prints quarter followed by a space q times then prints dime followed by a space
d times then prints nickel followed by a space n times then prints penny followed by a space
p times. (Yes, this prints a trailing space at the end; that’s fine for an exam.)

9. (10 points) (More Haskell)

The code in exam.hs includes this instance declaration:

instance Eq Money where

(==) (Money q1 d1 n1 p1) (Money q2 d2 n2 p2) =

q1 == q2 && d1 == d2 && n1 == n2 && p1 == p2

as well as some sample tests that use this definition.

(a) In exam.hs, comment out the definition of (==) and provide a different definition such that money
values are equal if they have the “same money value.”

(b) (In either a separate text file or as comment in the Haskell file), explain in roughly 3–4 English
sentences how main behaves both before and after this change and why it behaves how it does.

(c) (In either a separate text file or as comment in the Haskell file), explain in 1–2 English sentences
how your answer in part (b) would differ in a (hypothetical) variant of OCaml with typeclasses.

10. (12 points) (Object-Oriented Programming)

Consider the skeleton below of a class definition using the same sort of pseudocode from lecture. This
class for “money” has methods that correspond to analogous functions we wrote in OCaml or Haskell,
where, like in the rest of the exam, we avoid mutation — in this case by having removeCoin return a
new object instead:

class Money {

private int num_quarters, num_dimes, num_nickels, num_pennies; // 4 private fields

constructor(int q, int d, int n, int p) { ... }

int getQuarters() { num_quarters }

// similar "getters" for dimes, nickels, and pennies [not shown]

int valueOfMoney() { 25 * num_quarters + 10 * num_dimes + ... }

// return a new object that is almost like "self" with one less coin

Money removeCoin(Coin c) { ... }

// means same number of each kind of coin; NOT same valueOfMoney

bool equals(Money other) { ... }

}

A common argument in favor of OOP is that subclassing and subtyping make software more reusable
and extensible. Suppose in this case we wish to create a subclass that supports dollar-coins:

// assume "MoreCoins" has the usual coins *and* dollar coins

// (you can assume MoreCoins is a subclass of Coin or just a different

// type -- either assumption doesn’t really change the questions below)

class MoreMoney extends Money { // subclass supporting dollar coins

private int num_dollars; // add a field for dollar coins

int getDollars() { num_dollars } // new getter

constructor(List<MoreCoins> coinlist) { ... }

...

}

In a text file or similar, for each of the following, either describe a problem with it in approximately 1-2
precise English sentences (in terms of functionality and/or type-checking) or if there are no problems,
just say “works fine” (without any explanation needed).

(a) MoreMoney inheriting getQuarters from Money

(b) MoreMoney inheriting valueOfMoney from Money

(c) MoreMoney inheriting removeCoin from Money

(d) MoreMoney inheriting equals from Money

(e) MoreMoney overriding getQuarters from Money

(f) MoreMoney overriding valueOfMoney from Money

(g) MoreMoney overriding removeCoin from Money

(h) MoreMoney overriding equals from Money

