CSE P505, Spring 2006, Logo Description (for Assignment 2)

Last updated: Apr 11.

The BNF definition of Logo syntax is:

\[e ::= \text{home} | \text{forward } f | \text{turn } f | \text{for } i \text{ lst} \]
\[\text{lst} ::= [] | e::\text{lst} \]

where \(f \) is a floating-point number and \(i \) is an integer. Note a for-loop executes a fixed number of times and its body is a list of “moves”. A Logo program is a \(\text{lst} \), i.e., a list of moves.

Informally, the semantics of a move list is:

- A program state includes a “current x-coordinate” (call it \(x \)) a “current y-coordinate” (call it \(y \)) and a “current direction” (call it \(d \)). All are floating-point numbers. \(d \) is in radians (so 0.0 is “facing East” and \(\pi/2 \) is “facing North”).

- The initial program state is 0.0 for each of \(x \), \(y \), and \(d \).

- A move \(e \) takes a state and a list of “places visited so far” and produces a state and a list of “places visited so far”. A place is an \(x \) and a \(y \) (no direction).
 - \text{home} changes the state back to the initial state.
 - \text{forward } r changes the state by “moving in the current direction the distance \(r \)”. (So \(x \) and \(y \) may change, but \(d \) will not.)
 - \text{turn } r changes the state by “adding \(r \) radians to the current direction”. (So \(x \) and \(y \) will not change and we do not “visit a new place”.)
 - \text{for } i \text{ lst} executes its move-list \(i \) times.

- A move-list executes each move in order. (The empty list does nothing.)

Notes:

- The trace of places visited could (and in some cases should) have repeats.

- It is best (but not strictly necessary) to “normalize” the current direction to always be between 0 and \(2\pi \); this requires a simple call to \text{mod_float} in the right place.

- You will notice floating-point rounding errors. Do not worry about them.

- Relevant high-school geometry:
 - A regular polygon with \(n \) sides has angles of \(2\pi/n \) radians.
 - Starting from \((x, y)\), the point distance \(r \) away in direction \(d \) is \((x + r \cos d, y + r \sin d)\).
 - After turning \(d_1 \) radians from direction \(d_2 \), the new direction is \(d_1 + d_2 \).