
CSE P505, Spring 2006, IMP Formal Semantics

s ::= skip | x := e | s; s | if e s s | while e s
e ::= i | x | e + e | e ∗ e
(i ∈ {. . . ,−2,−1, 0, 1, 2, . . .})
(x ∈ {x1, x2, . . . , y1, y2, . . . , z1, z2, . . . , . . .})

We write H(x) to indicate the value of x in heap H.
We write H,x 7→ i to represent the heap that is just like H except H(x) = i.
A program evaluates to H ′(ans) if H0 ; e ⇓ H ′ wher H0 is the heap where H0(x) = 0 for all x.
H ; e ⇓ i

const

H ; c ⇓ c

var

H ; x ⇓ H(x)

add
H ; e1 ⇓ c1 H ; e2 ⇓ c2

H ; e1 + e2 ⇓ c1 + c2

mult
H ; e1 ⇓ c1 H ; e2 ⇓ c2

H ; e1 ∗ e2 ⇓ c1 ∗ c2

H ; s ⇓ H ′

skip

H ; skip ⇓ H

assign
H ; e ⇓ i

H ; x := e ⇓ H,x 7→ i

seq

H ; s1 ⇓ H ′′ H ′′ ; s2 ⇓ H ′

H ; s1; s2 ⇓ H ′

if1
H ; e ⇓ i i 6= 0 H ; s1 ⇓ H ′

H ; if e s1 s2 ⇓ H ′

if2
H ; e ⇓ i i = 0 H ; s2 ⇓ H ′

H ; if e s1 s2 ⇓ H ′

while
H ; if e (s;while e s) skip ⇓ H ′

H ; while e s ⇓ H ′

Note: Instead of doing one rule for loops that “unrolls to an if” we could have had two rules like we have
two rules for if. One rule (when the result of evaluating e is 0) would produce no heap change; the other
would evaluate s and then the whole loop again.

1

