CSE P505, Spring 2006
Some Sample Final-Exam Questions

Caveats:

• These questions probably aren’t as good as those on the exam. Your instructor wrote some of them quickly, so they may be more “study problems” than “exam problems”, but they’re certainly in the style of exam problems. Feel free to email if they’re ambiguous and/or inscrutable.

• The actual exam will cover some of the same topics and some different ones.

• Some of these sample questions are from old exams given in slightly different classes.

• There are more questions here than on the exam.
1. (Bad statement rules)
 (a) Why do we not have this rule in our IMP statement semantics?

 $H_0; s_1 \downarrow H_1 \quad H_1; s_2 \downarrow H_2 \quad H_2; s_3 \downarrow H_3$

 $H_0; s_1; (s_2; s_3) \downarrow H_3$

 (b) Why do we not have this rule in our IMP statement semantics?

 $H_0; s_2 \downarrow H_1 \quad H_1; s_1 \downarrow H_2$

 $H_0; s_1; s_2 \downarrow H_2$
2. (Functional programming)

(a) Consider this Caml code:

```
let x = 2
let f y = x + y
let ans1 = (let x = 3 in
    let a = A (f 4) in
    let x = 5 in
    match a with
    | A x -> x | B x -> x 6)

let ans2 = (let x = 3 in
    let b = B f in
    let x = 5 in
    match b with
    | A x -> x | B x -> x 6)
```

After evaluating this code, what values are `ans1` and `ans2` bound to?

(b) Consider this Caml code:

```
let rec g x =
match x with
| [] -> []
| hd::tl -> (fun y -> hd + y)::(g tl)
```

i. What does this function do?
ii. What is this function’s type?
iii. Write a function `h` that is the inverse of `g`. That is, `fun x -> h (g x)` would return a value equivalent to its input.
3. Assume a typed lambda-calculus with records, references, and subtyping. For each of the following, describe exactly the conditions under which the subtyping claim holds.

Example question: \{l_1: \tau_1, \ l_2: \tau_2\} \leq \{l_1: \tau_3, \ l_2: \tau_4\}

Example answer: “when \(\tau_1 \leq \tau_3\) and \(\tau_2 \leq \tau_4\)”

Your answer should be “fully reduced” in the sense that if you say \(\tau \leq \tau'\), then \(\tau\) or \(\tau'\) or both should be \(\tau_i\) for some number \(i\) where \(\tau_i\) appears in the question.

Note: We did not discuss much (at all?) in P505 that references are like records with one mutable field.

(a) (\{l_1: \tau_1, l_2: \tau_2\}) \rightarrow \text{int} \leq (\{l_1: \tau_3, l_2: \tau_4\}) \rightarrow \text{int}

(b) \{l_1: (\tau_1 \text{ ref})\} \leq \{l_1: \tau_2\}

(c) (\tau_1 \rightarrow \tau_2) \rightarrow (\tau_3 \rightarrow \tau_4) \leq (\tau_5 \rightarrow \tau_6) \rightarrow (\tau_7 \rightarrow \tau_8)

(d) (\tau_1 \rightarrow \tau_2) \text{ ref} \leq (\tau_3 \rightarrow \tau_4) \text{ ref}
4. (Simply-Typed λ calculus)
 For all subproblems, assume the simply-typed λ calculus.
 (a) (6 points) Give a Γ, e_1, e_2, and τ such that $\Gamma \vdash e_1 : \tau$ and $\Gamma \vdash e_2 : \tau$ and $e_1 \neq e_2$.
 (b) (6 points) Give a Γ_1, Γ_2, e, and τ such that $\Gamma_1 \vdash e : \tau$ and $\Gamma_2 \vdash e : \tau$ and $\Gamma_1 \neq \Gamma_2$.
 (c) (8 points) Give a Γ, e, τ_1, and τ_2 such that $\Gamma \vdash e : \tau_1$ and $\Gamma \vdash e : \tau_2$ and $\tau_1 \neq \tau_2$.
5. Our formal inference rule for typing letrec allowed only one recursive function. Give a typing rule (an inference rule for the judgment $\Gamma \vdash e : \tau$) for the extension below. It allows two mutually recursive functions. Assume it evaluates to a pair of functions (the first function and then the second function).

$$\text{letrec } f \ x. \ e_1 \ \text{and } g \ y. \ e_2$$
6. Consider this Caml syntax for a \(\lambda \)-calculus:

\[
\text{type exp} = \begin{array}{ll}
\text{Var of string} \\
| \text{Lam of string * exp} \\
| \text{Apply of exp * exp} \\
| \text{Int of int} \\
| \text{Pair of exp * exp} \\
| \text{First of exp} \\
| \text{Second of exp}
\end{array}
\]

(a) Write a Caml function \texttt{swap} of type \texttt{exp->exp} that changes all \texttt{Pair} expressions by switching the order of the subexpressions, changes all \texttt{First} expressions into \texttt{Second} expressions, and changes all \texttt{Second} expressions into \texttt{First} expressions.

(b) True or false: Given an implementation of the \(\lambda \)-calculus, \(\text{interp}(\text{swap}(e)) \) is always that same as \(\text{interp}(e) \).

(c) True or false: Given an implementation of the \(\lambda \)-calculus, if \(\text{interp}(\text{swap}(e)) \) returns \texttt{Int} \(i \), then \(\text{interp}(e) \) returns \texttt{Int} \(i \).
7. Consider the following Caml code.

 let catch_all1 t1 t2 = try t1 () with x -> t2 ()
 let catch_all2 t1 t2 = try t1 () with x -> t2

 (a) Under what conditions, if any, does using catch_all1 raise an exception?
 (b) Under what conditions, if any, does using catch_all2 raise an exception?
 (c) What type does Caml give catch_all1? (You can give your answer in Caml notation or System-F notation.)
 (d) What type does Caml give catch_all2? (You can give your answer in Caml notation or System-F notation.)
8. Consider these definitions in a class-based OO language:

```java
class C1 {
    int g() { return 0; }
    int f() { return g(); }
}
class C2 extends C1 {
    int g() { return 1; }
}
class D1 {
    private C1 x = new C1();
    int g() { return 0; }
    int f() { return x.f(); }
}
class D2 extends D1 {
    int g() { return 1; }
}
class Main {
    int m1(C1 x) { return x.f(); }
    int m2(C2 x) { return x.f(); }
    int m3(D1 x) { return x.f(); }
    int m4(D2 x) { return x.f(); }
}
```

Assume this is not the entire program, but the rest of the program does not declare subclasses of the classes above.

Explain your answers:

(a) True or false: Changing the body of `m1` to `return 0` produces an equivalent `m1`.
(b) True or false: Changing the body of `m2` to `return 1` produces an equivalent `m2`.
(c) True or false: Changing the body of `m3` to `return 0` produces an equivalent `m3`.
(d) True or false: Changing the body of `m4` to `return 1` produces an equivalent `m4`.
(e) How do your answers change if the rest of the program might declare subclasses of the classes above (excluding `Main`)?
9. Suppose we *change the semantics* of Java so that method-lookup uses multimethods instead of static overloading.

True or false. **Briefly explain your answers.**

(a) If all methods in program P take 0 arguments (that is, all calls look like $e.m()$), then P definitely behaves the same after the change.

(b) If all methods in program P take 1 argument (that is, all calls look like $e.m(e')$), then P definitely behaves the same after the change.

(c) If a program P typechecks without ever using subsumption, then P definitely behaves the same after the change.

(d) Given an arbitrary program P, it is decidable whether P behaves the same after the change.
10. Suppose we extend a class-based object-oriented language with a keyword `null`, which has type `NullType`, which is a subtype of any type.

(a) Explain why the subtyping described above is backwards. How does some popular language you know deal with this?

(b) With static overloading or multimethods (the issue is the same), show how `null` can lead to ambiguities.
11. (a) Write a Caml program using locks that will always deadlock, but only because the locks provided
by the Mutex library are not reentrant. (If you forget the names of library functions, just make
them up and explain; you’ll get full credit.)

(b) Write a Caml program that will always deadlock even if the locks provided by the Mutex library
were reentrant. (Assume threads implicitly release all locks when they terminate.) (Note: The
hard part is the word “always”.)
12. Suppose a bug in a garbage collector causes it to always treat memory address 0xDEADBEF as a root. Give two separate reasons that this single bug could cause a program to leak an arbitrary amount of memory.