
Name:

CSE P505, Spring 2006
Some Sample Final-Exam Questions

Caveats:

• These questions probably aren’t as good as those on the exam. Your instructor wrote some of them
quickly, so they may be more “study problems” than “exam problems”, but they’re certainly in the
style of exam problems. Feel free to email if they’re ambiguous and/or inscrutable.

• The actual exam will cover some of the same topics and some different ones.

• Some of these sample questions are from old exams given in slightly different classes.

• There are more questions here than on the exam.

1



Name:

1. (Bad statement rules)

(a) Why do we not have this rule in our IMP statement semantics?

H0 ; s1 ⇓ H1 H1 ; s2 ⇓ H2 H2 ; s3 ⇓ H3

H0 ; s1; (s2; s3) ⇓ H3

(b) Why do we not have this rule in our IMP statement semantics?

H0 ; s2 ⇓ H1 H1 ; s1 ⇓ H2

H0 ; s1; s2 ⇓ H2

Solution:

(a) It is unnecessary because we can use one of the rules we have twice to derive the same result.

(b) It is not what we “want” – the purpose of a sequence of statements is to execute the statements
in order. This rule would make our language non-deterministic in a way we don’t want because
it lets us execute the two parts of a sequence in either order.

2



Name:

2. (Functional programming)

(a) Consider this Caml code:

type t = A of int | B of (int->int)
let x = 2
let f y = x + y
let ans1 = (let x = 3 in

let a = A (f 4) in
let x = 5 in
match a with A x -> x | B x -> x 6)

let ans2 = (let x = 3 in
let b = B f in
let x = 5 in
match b with A x -> x | B x -> x 6)

After evaluating this code, what values are ans1 and ans2 bound to?

(b) Consider this Caml code:

let rec g x =
match x with
[] -> []

| hd::tl -> (fun y -> hd + y)::(g tl)

i. What does this function do?
ii. What is this function’s type?
iii. Write a function h that is the inverse of g. That is, fun x -> h (g x) would return a value

equivalent to its input.

Solution:

(a) ans1 is bound to 6 and ans2 is bound to 8.

(b) This function takes a list of integers and returns a list of functions where the ith element in the
output list returns the sum of its input and the ith element of the input list.

(c) int list -> ((int -> int) list)

(d) let rec h x =
match x with
[] -> []
| hd::tl -> (hd 0)::(h tl)

3



Name:

3. Assume a typed lambda-calculus with records, references, and subtyping. For each of the following,
describe exactly the conditions under which the subtyping claim holds.

Example question: {l1:τ1, l2:τ2} ≤ {l1:τ3, l2:τ4}

Example answer: “when τ1 ≤ τ3 and τ2 ≤ τ4”

Your answer should be “fully reduced” in the sense that if you say τ ≤ τ ′, then τ or τ ′ or both should
be τi for some number i where τi appears in the question.

Note: We did not discuss much (at all?) in P505 that references are like records with one mutable
field.

(a) ({l1:τ1, l2:τ2}) → int ≤ ({l1:τ3, l2:τ4}) → int

(b) {l1:(τ1 ref)} ≤ {l1:τ2}

(c) (τ1 → τ2) → (τ3 → τ4) ≤ (τ5 → τ6) → (τ7 → τ8)

(d) (τ1 → τ2) ref ≤ (τ3 → τ4) ref

Solution:

(a) when τ3 ≤ τ1 and τ4 ≤ τ2

(b) when τ2 has the form τ3 ref, τ3 ≤ τ1, and τ1 ≤ τ3

(c) when τ1 ≤ τ5, τ6 ≤ τ2, τ7 ≤ τ3, and τ4 ≤ τ8

(d) when τ1 ≤ τ3, τ3 ≤ τ1, τ2 ≤ τ4, and τ4 ≤ τ2

4



Name:

4. (Simply-Typed λ calculus)
For all subproblems, assume the simply-typed λ calculus.

(a) (6 points) Give a Γ, e1, e2, and τ such that Γ ` e1 : τ and Γ ` e2 : τ and e1 6= e2.

(b) (6 points) Give a Γ1, Γ2, e, and τ such that Γ1 ` e : τ and Γ2 ` e : τ and Γ1 6= Γ2.

(c) (8 points) Give a Γ, e, τ1, and τ2 such that Γ ` e : τ1 and Γ ` e : τ2 and τ1 6= τ2.

Solution:

(a) Γ = x:int, y:int, e1 = x, e2 = y, τ = int.

(b) Γ1 = x:int, Γ2 = x:int, y:int, e = x, τ = int.

(c) Γ = ·, e = λx. x, τ1 = int → int, τ2 = (int → int) → (int → int)

5



Name:

5. Our formal inference rule for typing letrec allowed only one recursive function. Give a typing rule (an
inference rule for the judgment Γ ` e : τ) for the extension below. It allows two mutually recursive
functions. Assume it evaluates to a pair of functions (the first function and then the second function).

letrec f x. e1 and g y. e2

Solution:

Γ, f :τ1 → τ2, x:τ1, g:τ3 → τ4 ` e1 : τ2 Γ, f :τ1 → τ2, y:τ3, g:τ3 → τ4 ` e2 : τ4

Γ ` letrec f x. e1 and g y. e2 : (τ1 → τ2) ∗ (τ3 → τ4)

6



Name:

6. Consider this Caml syntax for a λ-calculus:

type exp = Var of string
| Lam of string * exp
| Apply of exp * exp
| Int of int
| Pair of exp * exp
| First of exp
| Second of exp

(a) Write a Caml function swap of type exp->exp that changes all Pair expressions by switching the
order of the subexpressions, changes all First expressions into Second expressions, and changes
all Second expressions into First expressions.

(b) True or false: Given an implementation of the λ-calculus, interp(swap(e)) is always that same
as interp(e).

(c) True or false: Given an implementation of the λ-calculus, if interp(swap(e)) returns Int i, then
interp(e) returns Int i.

Solution:

(a) let swap e =
match e with
Var _ -> e

| Lam(s,e) -> Lam(s,swap e)
| Apply(e1,e2) -> App(swap e1, swap e2)
| Int _ -> e
| Pair(e1,e2) -> Pair(swap e2, swap e1)
| First e -> Second (swap e)
| Second e -> First (swap e)

(b) False. For example First 3 becomes Second 3, which is not the same.

(c) True. We consistently swap everything.

7



Name:

7. Consider the following Caml code.

let catch_all1 t1 t2 = try t1 () with x -> t2 ()

let catch_all2 t1 t2 = try t1 () with x -> t2

(a) Under what conditions, if any, does using catch_all1 raise an exception?

(b) Under what conditions, if any, does using catch_all2 raise an exception?

(c) What type does Caml give catch_all1? (You can give your answer in Caml notation or System-F
notation.)

(d) What type does Caml give catch_all2? (You can give your answer in Caml notation or System-F
notation.)

Solution:

(a) when calling its first argument raises an exception and calling its second argument raises an
exception

(b) never

(c) Caml: (unit → α) → (unit → α) → α

(d) Caml: (unit → α) → α → α

8



Name:

8. Consider these definitions in a class-based OO language:

class C1 { class Main {
int g() { return 0; } int m1(C1 x) { return x.f() }
int f() { return g(); } int m2(C2 x) { return x.f() }

} int m3(D1 x) { return x.f() }
class C2 extends C1 { int m4(D2 x) { return x.f() }

int g() { return 1; } }
}
class D1 {

private C1 x = new C1();
int g() { return 0; }
int f() { return x.f(); }

}
class D2 extends D1 {

int g() { return 1; }
}

Assume this is not the entire program, but the rest of the program does not declare subclasses of the
classes above.

Explain your answers:

(a) True or false: Changing the body of m1 to return 0 produces an equivalent m1.

(b) True or false: Changing the body of m2 to return 1 produces an equivalent m2.

(c) True or false: Changing the body of m3 to return 0 produces an equivalent m3.

(d) True or false: Changing the body of m4 to return 1 produces an equivalent m4.

(e) How do your answers change if the rest of the program might declare subclasses of the classes
above (excluding Main)?

Solution:

(a) false: If m1 is passed an instance of C2, it will return 1.

(b) true: there are no subtypes of C2, so any call to m2 will pass an instance of C2, and late-binding
ensures the f method of a C2 returns 1.

(c) true: Any call to m3 will pass an instance of D1 or D2. The f methods for both are the same:
return the result of C1’s f method.

(d) false: same reason as previous question

(e) All claims become false because calls to f in Main could resolve to methods defined in subclasses
we do not see above.

9



Name:

9. Suppose we change the semantics of Java so that method-lookup uses multimethods instead of static
overloading.

True or false. Briefly explain your answers.

(a) If all methods in program P take 0 arguments (that is, all calls look like e.m()), then P definitely
behaves the same after the change.

(b) If all methods in program P take 1 argument (that is, all calls look like e.m(e′)), then P definitely
behaves the same after the change.

(c) If a program P typechecks without ever using subsumption, then P definitely behaves the same
after the change.

(d) Given an arbitrary program P , it is decidable whether P behaves the same after the change.

Solution:

(a) True. The difference between multimethods and static overloading is whether method lookup
uses the (compile-time) types or the (run-time) classes of non-receiver (i.e., non-self) arguments.
Without any such arguments, this aspect of method-lookup is never used.

(b) False. Same explanation as in previous part but there are now non-receiver arguments.

(c) True. Without subsumption, the compile-time type is always the same as the run-time class of
every object, so the different method-lookup rules will always produce the same answer (because
they are always given the same “input”).

(d) False. We have seen examples of calls that resolve differently for static overloading and multi-
methods. Suppose e.m(e1) is such a call and P ′ is a program whose behavior is the same under
either semantics (e.g., maybe it has no subsumption). Then P ′;e.m(e1) behaves the same if and
only if P ′ does not halt. Halting is undecidable because Java is Turing-complete (even without
subsumption).

10



Name:

10. Suppose we extend a class-based object-oriented language with a keyword null, which has type
NullType, which is a subtype of any type.

(a) Explain why the subtyping described above is backwards. How does some popular language you
know deal with this?

(b) With static overloading or multimethods (the issue is the same), show how null can lead to
ambiguities.

Solution:

(a) null has no fields or methods, so width subtyping suggests it should be a supertype of other
types. Indeed, trying to access a member leads to a “stuck” (message not understood) state.
Most languages make this a run-time error (raise an exception in Java or C#; lead to arbitrary
behavior in C++).

(b) Suppose class C has two methods void m(A) and void m(B) where A and B are not subtypes of
each other. Then a call that passes null is ambiguous since there are no grounds to prefer one
method over the other.

11



Name:

11. (a) Write a Caml program using locks that will always deadlock, but only because the locks provided
by the Mutex library are not reentrant. (If you forget the names of library functions, just make
them up and explain; you’ll get full credit.)

(b) Write a Caml program that will always deadlock even if the locks provided by the Mutex library
were reentrant. (Assume threads implicitly release all locks when they terminate.) (Note: The
hard part is the word “always”.)

Solution:

(a) let lk = Mutex.create()
let _ = Mutex.lock lk
let _ = Mutex.lock lk

(b) let lk1 = Mutex.create()
let lk2 = Mutex.create()
let r1 = ref false
let r2 = ref false
let rec until_true r =
if !r
then ()
else (Thread.yield(); until_true r)

let _ = Thread.create (fun () ->
Mutex.lock lk1;
r1 := true;
until_true r2;
Mutex.lock lk2)

let _ = Mutex.lock lk2;
r2 := true;
until_true r1;
Mutex.lock lk1

12



Name:

12. Suppose a bug in a garbage collector causes it to always treat memory address 0xDEADBEEF as a root.
Give two separate reasons that this single bug could cause a program to leak an arbitrary amount of
memory.

Solution:

(a) A program might allocate an arbitrarily large object at this address. Once it becomes garbage, it
is a leak.

(b) A program might put the head of an arbitrarily large linked list at this address. The entire list
will never be garbage collected, even though each object in the list is small and none of them may
be reachable except via the pointer in 0xDEADBEEF.

13


