Formal Semantics

Why formalize?
- ML is tricky, particularly in corner cases
 - generalizable type variables?
 - polymorphic references?
 - exceptions?
- Some things are often overlooked for any language
 - evaluation order? side-effects? errors?
- Therefore, want to formalize what a language’s definition really is
 - Ideally, a clear & unambiguous way to define a language
 - Programmers & compiler writers can agree on what’s supposed to happen, for all programs
 - Can try to prove rigorously that the language designer got all the corner cases right

Aspects to formalize
- Syntax: what’s a syntactically well-formed program?
 - EBNF notation for a context-free grammar
- Static semantics: which syntactically well-formed programs are semantically well-formed? which programs type-check?
 - typing rules, well-formedness judgments
- Dynamic semantics: what does a program evaluate to or do when it runs?
 - operational, denotational, or axiomatic semantics
- Metatheory: properties of the formalization itself
 - E.g. do the static and dynamic semantics match? i.e., is the static semantics sound w.r.t. the dynamic semantics?

Approach
- Formalizing full-sized languages is very hard, tedious
 - many cases to consider
 - lots of interacting features
- Better: boil full-sized language down into essential core, then formalize and study the core
 - cut out as much complication as possible, without losing the key parts that need formal study
 - hope that insights gained about core will carry back to full-sized language

The lambda calculus
- The essential core of a (functional) programming language
 - Developed by Alonzo Church in the 1930’s
 - Before computers were invented!
- Outline:
 - Untyped: syntax, dynamic semantics, cool properties
 - Simply typed: static semantics, soundness, more cool properties
 - Polymorphic: fancier static semantics

Untyped λ-calculus: syntax
- (Abstract) syntax:
 - \(e ::= x \) variable
 - \(\lambda x. e \) function/abstraction
 - \(e_1 e_2 \) call/application
- Freely parenthesize in concrete syntax to imply the right abstract syntax
- The trees described by this grammar are called term trees
Free and bound variables

- \(\lambda x. e \) binds \(x \) in \(e \)
- An occurrence of a variable \(x \) is **free** in \(e \) if it's not bound by some enclosing \(\lambda \) function.

 \[
 \text{freeVars}(x) = x \\
 \text{freeVars}(\lambda x. e) = \text{freeVars}(e) - \{x\} \\
 \text{freeVars}(e_1 e_2) = \text{freeVars}(e_1) \cup \text{freeVars}(e_2)
 \]
- \(e \) is **closed** if \(\text{freeVars}(e) = \{\} \)

a-renaming

- First semantic property of lambda calculus: bound variables in a term tree can be renamed (properly) without affecting the semantics of the term tree
- **\(\alpha \)-equivalent** term trees
 - \((\lambda x. x) x \), \((\lambda y. x) y \)
 - cannot rename free variables
- **term \(e \)** and all \(\alpha \)-equivalent term trees
 - Can freely rename bound vars whenever helpful

Evaluation: \(\beta \)-reduction

- Define what it means to "run" a lambda-calculus program by giving simple reduction/rewriting/simplification rules
 - "\(e \) evaluates to \(e' \)" means "\(e \) reduces to \(e' \) in one step"
- One case:
 - \((\lambda x. e) e_2 \) reduces to \([x \mapsto e_2]e \)
 - "if you see a lambda applied to an argument expression, rewrite it into the lambda body where all free occurrences of the formal in the body have been replaced by the argument expression"
 - Can do this rewrite anywhere inside an expression

Examples

Substitution

- When doing substitution, must avoid changing the meaning of a variable occurrence

 \[
 [x \mapsto e] x = e \\
 [x \mapsto e] y = y \text{ if } x \neq y \\
 [x \mapsto e] (\lambda x. e) = (\lambda x. e) \\
 [x \mapsto e] (\lambda y. e) = (\lambda y. [x \mapsto e] e) \text{ if } x \neq y \\
 [x \mapsto e] e_1 e_2 = ([x \mapsto e] e_1) ([x \mapsto e] e_2)
 \]
- Can use \(\alpha \)-renaming to ensure "\(y \) not free in \(e' \)"

Result of reduction

- To fully evaluate a lambda calculus term, simply perform \(\beta \)-reduction until you can't any more
 - \(\text{refl} \) = reflexive, transitive closure of \(\beta \)
- When you can't any more, you have a **value**, which is a **normal form** of the input term
 - Does every lambda-calculus term have a normal form?
Reduction order

- Can have several lambdas applied to an argument in one expression
 - Each called a redex
- Therefore, several possible choices in reduction
 - Which to choose? Must we do them all?
 - Does it matter?
 - To the final result?
 - To how long it takes to compute?
 - To whether the result is computed at all?

Two reduction orders

- Normal-order reduction
 - (a.k.a. call-by-name, lazy evaluation)
 - reduce leftmost, outermost redex
- Applicative-order reduction
 - (a.k.a. call-by-value, eager evaluation)
 - reduce leftmost, outermost redex
 - whose argument is in normal form
 (i.e., is a value)

Amazing fact #1: Church-Rosser Theorem, Part 1

- Thm. If \(e_1 \overset{\beta}{\rightarrow} e_2 \) and \(e_1 \overset{\beta}{\rightarrow} e_3 \), then
 \[e_4 \] such that \(e_2 \overset{\beta}{\rightarrow} e_4 \) and \(e_3 \overset{\beta}{\rightarrow} e_4 \)

- Corollary. Every term has a unique normal form, if it has one
 - No matter what reduction order is used!

Existence of normal forms?

- Does every term have a normal form?
- Consider: \((\lambda x. x x)(\lambda y. y y)\)

Amazing fact #2: Church-Rosser Theorem, Part 2

- If a term has a normal form, then normal-order reduction will find it!
 - Applicative-order reduction might not!

- Example:
 - \((\lambda x \lambda y. x y)((\lambda x. x x)(\lambda x. x x))\)

Weak head normal form

- What should this evaluate to?
 \((\lambda x. (\lambda x. x x)(\lambda x x))\)
 - Normal-order and applicative-order evaluation run forever
 - But in regular languages, wouldn't evaluate the function's body until we called it
 - "Head" normal form doesn't evaluate arguments until function expression is a lambda
 - "Weak" evaluation doesn't evaluate under lambda
 - With these alternative definitions of reduction:
 - Reduction terminates on more lambda terms
 - Correspond more closely to real languages (particularly "weak")
Amazing fact #3:
1-calculus is Turing-complete!

- But the 1-calculus is too weak, right?
 - No multiple arguments!
 - No numbers or arithmetic!
 - No booleans or if!
 - No data structures!
 - No loops or recursion!

Multiple arguments: currying

- Encode multiple arguments via curried functions, just as in regular ML

\[
\begin{align*}
1(x_1, x_2), e & \Rightarrow 1x_1 (1x_2, e) \quad (\ast 1x_1, x_2, e) \\
\kappa(e_1, e_2) & \Rightarrow (\kappa e_1) e_2
\end{align*}
\]

Church numerals

- Encode natural numbers using stylized lambda terms

\[
\begin{align*}
\text{zero} & \coloneqq \lambda s. \lambda z. z \\
\text{one} & \coloneqq \lambda s. \lambda z. s z \\
\text{two} & \coloneqq \lambda s. \lambda z. s (s z) \\
\vdots \\
\text{\vdots} \\
\end{align*}
\]

- A unary encoding using functions
 - No stranger than binary encoding

Arithmetic on Church numerals

- Successor function:
 take (the encoding of) a number, return (the encoding of) its successor

\[
\begin{align*}
succ & \coloneqq \lambda n. \lambda s. \lambda z. s (n s z) \\
succ \text{zero} & \coloneqq \lambda s. \lambda z. s z \\
succ \text{two} & \coloneqq \lambda s. \lambda z. s (two s z) \\
\end{align*}
\]

- Key idea: true and false are encoded as functions that do different things to their arguments, i.e., make a choice

\[
\begin{align*}
\text{if} & \coloneqq \lambda b. \lambda t. \lambda e. b \ e t e \\
\text{true} & \coloneqq \lambda t. \lambda e. t \\
\text{false} & \coloneqq \lambda t. \lambda e. e \\
\text{if false four six} & \coloneqq \lambda s. \lambda z. s (s (s (s z))) \\
\text{false four six} & \coloneqq \lambda s. \lambda z. s (s (s (s z))) \\
\text{six} & \coloneqq \lambda s. \lambda z. s (s (s (s (s (s z)))))
\end{align*}
\]

Addition

- To add \(x\) and \(y\), apply \textit{succ} to \(y\) \(x\) times

\[
\begin{align*}
\text{plus} & \coloneqq \lambda x. \lambda y. x \text{ succ } y \\
\text{plus two three} & \coloneqq \lambda z. z s (s (s z)) \\
\text{two succ three} & \coloneqq \lambda z. s (s (s (s z))) \\
\text{succ (succ three)} & \coloneqq \lambda z. s (s (s (s (s (s z))))
\end{align*}
\]

- Multiplication is repeated addition, similarly

Booleans

- Key idea: true and false are encoded as functions that do different things to their arguments, i.e., make a choice

\[
\begin{align*}
\text{if} & \coloneqq \lambda b. \lambda t. \lambda e. b \ e t e \\
\text{true} & \coloneqq \lambda t. \lambda e. t \\
\text{false} & \coloneqq \lambda t. \lambda e. e \\
\text{if false four six} & \coloneqq \lambda s. \lambda z. s (s (s (s z))) \\
\text{false four six} & \coloneqq \lambda s. \lambda z. s (s (s (s z))) \\
\text{six} & \coloneqq \lambda s. \lambda z. s (s (s (s (s (s z)))))
\end{align*}
\]
Combining numerals & booleans

- To complete Peano arithmetic, need an isZero predicate
 - Key idea: call the argument number on a successor function that always returns false (not zero) and a base value that's true (is zero)
  ```
  isZero : n. n (l.x. false) true
  ```

- isZero zero

- isZero two

Data structures

- Try to encode simple pairs
- Can build more complex data structures out of them
  ```
  mkPair : l.f. l.s. l.x. x f s
  ```

- first : p. p (l.f. l.s. f)

- second : p. p (l.f. l.s. s)

Loops and recursion

- 1-calculus can write infinite loops
 - E.g. (l.x. x x) (l.x. x x)
 - What about useful loops?
 - I.e., recursive functions?
- Ill-defined attempt:
  ```
  fact : l.n. if (isZero n) one (times n (fact (minus n one)))
  ```

- Recursive reference isn't defined in our simple short-hand notation
- We're trying to define what recursion means!

Amazing fact #N: Can define recursive funs non-recursively!

- Step 1: replace the bogus self-reference with an explicit argument
  ```
  factG : l.f. l.n. if (isZero n) one (times n (f (minus n one)))
  ```

- Step 2: use the paradoxical Y combinator to "tie the knot"
  ```
  fact = Y factG
  ```

- Now all we need is a magic Y that makes its non-recursive argument act like a recursive function...

Y combinator

- A definition of Y:
  ```
  Y : l.f. (l.x. f(x x)) (l.x. f(x x))
  ```

- When applied to a function f:
  ```
  Yf = (l.x. f(x x)) (l.x. f(x x)) = f(Y f)
  ```

- Applies its argument to itself as many times as desired
- "Computes" the fixed point of f
 - Often called fix

Y for factorial

- fact two
  ```
  (Y factG) two
  ```

- factG (Y factG) two
  ```
  if (isZero two) one (times two ((Y factG) (minus two one)))
  ```

- times two ((Y factG) (minus two one))
  ```
  times two (Y factG) one
  ```

- times two (Y factG) one

- times two (Y factG) one
  ```
  times two ((Y factG) (minus zero one)))
  ```

- times two (Y factG) one

- times two (Y factG) one
  ```
  times two (Y factG) one
  ```

- times two (Y factG) one

- times two (Y factG) one
  ```
  times two (Y factG) one
  ```

- times two (Y factG) one

- times two (Y factG) one
Some intuition (?)

- Y passes a recursive call of a function to the function
- Will lead to infinite reduction, unless one recursive call chooses to ignore its recursive function argument
 - I.e., have a base case that’s not defined recursively
 - Relies on normal-order evaluation to avoid evaluating the recursive call argument until needed

Summary, so far

- Saw untyped λ-calculus syntax
- Saw some rewriting rules, which defined the semantics of λ-terms
 - a-renaming for changing bound variable names
 - b-reduction for evaluating terms
 - Normal form when no more evaluation possible
 - Normal-order vs. applicative-order strategies
- Saw some amazing theorems
- Saw the power of λ-calculus to encode lots of higher-level constructs

Simply-typed lambda calculus

- Now, let’s add static type checking
- Extend syntax with types:
 - $t ::= t_1 \cdot t_2 | e \cdot t_1 \cdot e | x \cdot e_1 \cdot e_2$
 - (The dot is just the base case for types, to stop the recursion. Values of this type will never be invoked, just passed around.)

Typing judgments

- Introduce a compact notation for defining typechecking rules
- A typing judgment: $G \vdash e : t$
 - “In the typing context G, expression e has type t”
- A typing context: a mapping from variables to their types
 - Syntax: $G ::= {} | G, x : t$

Typing rules

- Give typechecking rule(s) for each kind of expression
- Write as a logical inference rule
 - premise, … premise, (α i 0)
 - conclusion
 - Whenever all the premises are true, can deduce that the conclusion is true
 - If no premises, then called an “axiom”
 - Each premise and conclusion has the form of a typing judgment

Typing rules for simply-typed λ-calculus

- $\alpha, \Gamma, e \vdash e : t$
 - [T-ABS]
 - $\alpha \vdash (\lambda x : t \cdot \phi) \cdot e_1 : \phi$
 - [T-VAR]
 - $\alpha \vdash x : \phi$\n - $\alpha \vdash e_1 \cdot e_2 : t$
 - [T-APP]
 - $\alpha \vdash e_1 : e_2 : t$
Examples

Typing derivations
- To prove that a term has a type in some typing context, chain together a tree of instances of the typing rules, leading back to axioms
- If can't make a derivation, then something isn't true

Examples

Formalizing variable lookup
- What does $G(x)$ mean?
- What if G includes several different types for x?
 - $G = x, y, x : \text{fi}, x, y : \text{fi}$
 - Can this happen?
 - If it can, what should it mean?
 - Any of the types is OK?
 - Just the leftmost? rightmost?
 - None are OK?

An example
- What context is built in the typing derivation for this expression?
 - $\lambda x : t_1. (\lambda x : t_2. x)$
- What should the type of x in the body be?
- How should $G(x)$ be defined?

Formalizing using judgments
- $\frac{}{G, x : \varepsilon \vdash x : \varepsilon}$
 - $[\text{T-VAR-1}]$
- $\frac{G \vdash x : \varepsilon}{G, y : t_2 \vdash x : \varepsilon}$
 - $[\text{T-VAR-2}]$
- What about the $G = \emptyset$ case?
Type-checking self-application

- What type should I give to \(x \) in this term?
 \(\lambda x : ? . (x \; x) \)

- What type should I give to the \(f \) and \(x \)'s in \(Y \)?
 \(Y = \lambda f : ? . (\lambda x : ? . f (x \; x)) \; (\lambda x : ? . f (x \; x)) \)

Adding an explicit recursion operator

- Several choices; here's one:
 add an expression "fix \(e \)"

- Define its reduction rule:
 \[\text{fix } e :: e (\text{fix } e) \]

- Define its typing rule:
 \[\begin{align*}
 G \vdash e : ? \\
 G \vdash (\text{fix } e) : ?
 \end{align*} \]

Defining reduction precisely

- Use inference rules to define \(\text{fix }_f \) redexes precisely
 \[\begin{align*}
 (\lambda x : ? . e_1) \; v_2 & \rightarrow (\lambda x : ? . e_1) \; v_2 \\
 e_1 \; \text{fix }_f \; e_2 & \rightarrow e_1 \; (\text{fix }_f e_2) \\
 (\text{fix }_f e) \; e_2 \; e_3 & \rightarrow (\lambda x : ? . e) \; \text{fix }_f \; e \; e_2 \; e_3
 \end{align*} \]

Example: call-by-value rules

- Can specify evaluation order by identifying which computations have been fully evaluated (have no redexes left), i.e., values \(V \)
 - one option:
 \[V ::= \lambda x : ? . e \]
 - another option:
 \[V ::= \lambda x : ? \cdot V \]
 - what's the difference?
Type soundness

- What's the point of a static type system?
 - Identify inconsistencies in programs
 - Early reporting of possible bugs
 - Document (one aspect of) interfaces precisely
 - Provide info for more efficient compilation
- Most assume that type system "agrees with" evaluation semantics, i.e., is sound
 - Two parts to type soundness: preservation and progress

Preservation

- Type preservation: if an expression has a type, and that expression reduces to another expression/value, then that other expression/value has the same type
 - If \(\Gamma \vdash e : \tau \) and \(e \rightarrow e' \), then \(\Gamma \vdash e' : \tau \)
- Implies that types correctly "abstract" evaluation, i.e., describe what evaluation will produce

Progress

- If an expression successfully typechecks, then either the expression is a value, or evaluation can take a step
 - If \(\Gamma \vdash e : \tau \), then \(e \) is a value or \(e \) is a value and \(\Gamma \vdash e' : \tau \)
- Implies that static typechecking guarantees successful evaluation without getting stuck
 - "well-typed programs don't go wrong"

Soundness

- Soundness = preservation + progress
 - If \(\Gamma \vdash e : \tau \) then \(e \) is a value or \(\exists e' \text{ s.t. } e \rightarrow e' \) and \(\Gamma \vdash e' : \tau \)
- Preservation sets up progress, progress sets up preservation
 - Soundness ensures a very strong match between evaluation and typechecking

Other ways to formalize semantics

- We've seen evaluation formalized using small-step (structural) operational semantics
- An alternative: big step (natural) operational semantics
 - Judgments of the form \(e \Downarrow \nu \)
 - "Expression \(e \) evaluates fully to value \(\nu \)"

Big-step call-by-value rules

\[
\begin{align*}
\lambda x : \tau. e & \Downarrow (\lambda x : \tau. e) \Downarrow (\lambda x : \tau. e) \\
\text{[E-ABS]} \\
\text{\(e \Downarrow \nu \)} & \Downarrow (\text{fix (\lambda x : \tau. e)}) \Downarrow \nu \\
\text{[E-FIX]} \\
\text{\((\text{fix } \nu) \Downarrow \nu \)} & \Downarrow v \\
\text{[E-FIX]}
\end{align*}
\]

- Simpler, fewer tedious rules than small-step; "natural"
- Cannot easily prove soundness for non-terminating programs
- Typing judgments are "big step"; why?
Yet another variation

- Real machines and interpreters don't do substitution of values for variables when calling functions
- Expensive!
- Instead, they maintain environments mapping variables to their values
- A.k.a. stack frames
- We can formalize this
 - For big step, judgments of the form $r \vdash e \Downarrow v$
 - "In environment r, expr. e evaluates fully to value $v"

Explicit environment rules

\[
\begin{align*}
r \vdash (\lambda x.e) \Downarrow (\lambda x.e) \\
(r \vdash e_1 \Downarrow v_1) \quad (r \vdash e_2 \Downarrow v_2) \quad e \Downarrow v & \quad \text{[E-APP]} \\
r \vdash e_1 \Downarrow (\lambda x.e) & \quad r, x=v_2 \vdash e \Downarrow v & \quad \text{[E-FIX]} \\
\end{align*}
\]

- Problems handling fix, since need to delay evaluation of recursive call
- Wrong! specifies dynamic scoping!

Explicit environments with closure values

\[
v ::= \langle l x: t.e, r \rangle
\]

\[
\begin{align*}
r \vdash \langle l x: t.e, e \rangle & \quad \text{[E-ABS]} \\
r \vdash e_1 \Downarrow \langle l x: t.e, r \rangle & \quad r \vdash e_2 \Downarrow \langle l x: t.e, r \rangle & \quad v \Downarrow \langle l x: t.e, r \rangle & \quad \text{[E-APP]} \\
r \vdash \langle l x: t.e, e \rangle \Downarrow v & \quad \text{[E-FIX]} \\
\end{align*}
\]

- Does static scoping, as desired
- Allows formal reasoning about explicit environments
- We found a bug in implementation of substitution via environments
- Makes proofs much more complicated

Other semantic frameworks

- We've seen several examples of operational semantics
 - Like specifying an interpreter, or a virtual machine
- An alternative: denotational semantics
 - Specifies the meaning of a term via translation into another (well-specified) language, usually mathematical functions
 - Like specifying a compiler!
 - More "abstract" than operational semantics
- Another alternative: axiomatic semantics
 - Specifies the result of expressions and effect of statements on properties known before and after
 - Suitable for formal verification proofs

Richer languages

- To gain experience formalizing language constructs, consider:
 - ints, bools
 - let
 - records
 - tagged unions
 - recursive types, e.g. lists
 - mutable refs

Basic types

- Enrich syntax:
 \[
 \begin{align*}
 \tau & ::= \ldots \mid \text{int} \mid \text{bool} \\
 e & ::= \ldots \mid 0 \mid \ldots \mid \text{true} \mid \text{false} \\
 & \quad | \ e_1 \ e_2 \ | \ldots \\
 & \quad | \ \text{if } e_1 \ \text{then } e_2 \ \text{else } e_3 \\
 v & ::= \ldots \mid 0 \mid \ldots \mid \text{true} \mid \text{false}
 \end{align*}
 \]
Add evaluation rules

- E.g., using big-step operational semantics

\[\vdash v : v \quad \text{(generalizes E-ABS)} \]

\[\vdash v_1 \quad \text{(E-VAL)} \]

\[\vdash v_2 \quad \text{(E-PLUS)} \]

\[\vdash v_3 \quad \text{(E-IF-tru)} \]

\[\vdash v_4 \quad \text{(E-IF-fal)} \]

- If no old rules need to be changed, then orthogonal
- + and if might not always reduce; evaluation can get stuck

Add typing rules

- Type soundness: if e typechecks, then can't get stuck

Let

\[e ::= \ldots \mid \text{let } x=e_1 \text{ in } e_2 \]

\[e_1 \Downarrow v_1 \quad \text{(E-LET)} \]

\[(\text{let } x=e_1 \text{ in } e_2) \Downarrow v_2 \]

\[\vdash e_1 : t_1 \quad \vdash x : t_2 \quad \vdash e : t_2 \quad \text{(T-LET)} \]

Evaluation and typing

\[e_1 \Downarrow v_1 \quad \vdash e_1 : t_1 \quad \text{(E-RECORD)} \]

\[(e_1, e_2, \ldots, e_n) \Downarrow (t_1, t_2, \ldots, t_n) \]

\[\vdash (e_1, e_2, \ldots, e_n) : (t_1, t_2, \ldots, t_n) \quad \text{(E-RECORD)} \]

\[\vdash e : (t_1, t_2, \ldots, t_n) \quad \text{(T-RECORD)} \]

\[\vdash (e_1, e_2, \ldots, e_n) : t_1 \quad \text{(T-RECORD)} \]

\[\vdash e : t \quad \text{(T-RECORD)} \]

Tagged unions

- A union of several cases, each of which has a tag
- Type-safe: cannot misinterpret value under tag

\[e ::= \ldots \mid <n_1=e_1, \ldots, n_m=e_m> \]

\[\text{val } u : \text{int} \cdot \text{bool} = \text{if } a=3 \text{ then } v \text{ else } b \]

\[\text{case } u \text{ of } <a=x> \Rightarrow \text{if } a=3 \text{ then } v \text{ else } b \]

\[\text{if } b=\text{true} \Rightarrow \text{if } t \text{ then } 8 \text{ else } 9 \]

Records

- Syntax:

\[t ::= \ldots \mid \{n_1=t_1, \ldots, n_m=t_m\} \]

\[e ::= \ldots \mid \{n_1=e_1, \ldots, n_m=e_m\} \mid \#n e \]

\[v ::= \ldots \mid \{n_1=v_1, \ldots, n_m=v_m\} \]
Evaluation and typing

```
\[ \frac{a \downarrow \nu \quad \text{[E-UNION]}}{a \downarrow \nu \times \nu} \]
\[ \frac{\vdash a \downarrow \nu \times \nu \quad \text{[E-CASE]}}{\vdash \text{case } a \text{ of } \langle n_1 = x_1 \Rightarrow e_1 \ldots n_n = x_n \Rightarrow e_n \rangle \downarrow \nu} \]
\[ \frac{\vdash a \downarrow \nu}{\vdash e : \nu} \quad \text{[T-UNION]} \]
\[ \frac{\vdash a \downarrow \nu \times \nu \quad \text{[T-CASE]}}{\vdash \text{case } a \text{ of } \langle n_1 = x_1 \Rightarrow e_1 \ldots n_n = x_n \Rightarrow e_n \rangle} \]
```

Where get the full type of the union in T-UNION?

Lists

- Use tagged unions to define lists:

 \[
 \text{int_list} = \langle \text{nil: unit, cons: (hd: int, tl: int_list)} \rangle
 \]

- But int_list is defined recursively

 - As with recursive function definitions, need to carefully define what this means

Recursive types

- Introduce a recursive type: \(mX. \, \varepsilon \)

 - \(\varepsilon \) can refer to \(X \) to mean the whole type, recursively

 \[
 \text{int_list} = mX \langle \text{nil: unit, cons: (hd: int, tl: L)} \rangle
 \]

 - This type means the infinite tree of "unfoldings" of the recursive reference

 - If \(\varepsilon \) contains a union type with non-recursive cases (base cases for the recursively defined type), then can have finite values of this "infinite" type

 \[
 \text{<nil=x> \Rightarrow fold <nil=()>} \quad \text{<cons=r> \Rightarrow fold <cons={hd=(#hd r) + (#hd r), tl=double (#tl r)}>}
 \]

 ...

Folding and unfolding

- What values have recursive types?

 - Can take a value of the body of the recursive type, and "fold" it up to make a recursive type

 \[
 \text{int_list} = L \langle \text{nil: unit, cons: (hd: int, tl: L)} \rangle
 \]

 \[
 \langle \text{nil=}() \Rightarrow \langle \text{nil=}(), \text{ cons=}() \Rightarrow \text{int_list} \rangle
 \]

 - Can "unfold" it to do the reverse

 - Explores the underlying type, so operations on it typecheck

 - Can introduce fold & unfold expressions, or can make when to do folding & unfolding implicit

Typing of fold and unfold

- Evaluation ignores fold & unfold

Using recursive values and types

- double: double all elems of an int_list

 \[
 \text{int_list} = mX \langle \text{nil: unit, cons: (hd: int, tl: L)} \rangle
 \]

 - double \(= \) fix \(\langle \text{double: (int_list: int_list)}. \text{1st:int_list.}

 \text{case (unfold lst) of}

 \[
 \langle \text{nil=}x \Rightarrow \text{fold <nil=}() \rangle
 \]

 \[
 \langle \text{cons=}r \Rightarrow \text{fold <cons=} (hd=double (#hd r), tl=double (#tl r)) \rangle
 \]
References and mutable state

- Syntax:
 \[
 \begin{align*}
 t &::= \ldots \mid \text{ref} \\
 e &::= \ldots \mid \text{ref} \ e \mid e_1 := e_2 \\
 v &::= \ldots \mid \text{ref} \ v
 \end{align*}
 \]

- Typing:
 \[
 \begin{array}{c}
 \frac{\vdash \ e : t}{\vdash (\text{ref} \ e) : t\text{-ref}} \quad \text{[T-REF]} \\
 \frac{\vdash \ e : t\text{-ref}}{\vdash (! \ e) : t} \quad \text{[T-DEREF]} \\
 \frac{\vdash \ e_1 : t\text{-ref} \quad \vdash \ e_2 : t}{\vdash (e_1 := e_2) : \text{unit}} \quad \text{[T-ASSIGN]}
 \end{array}
 \]

Evaluation of references

\[
\begin{align*}
\frac{e \Downarrow v}{(\text{ref} \ e) \Downarrow (\text{ref} \ v)} \quad \text{[E-REF]} \\
\frac{e \Downarrow (\text{ref} \ v)}{(! \ e) \Downarrow v} \quad \text{[E-DEREF]} \\
\frac{(e_1 := e_2) \Downarrow \text{unit}}{(e_1 := e_2) \Downarrow \text{unit}} \quad \text{[E-ASSIGN]}
\end{align*}
\]

- But where'd the assignment go?

Example

\[
\begin{align*}
(\text{let } r = \text{ref} \ 0 \ \text{in} \ (\text{let } x = (r := 2) \ \text{in} \ (！r)))
\end{align*}
\]

Stores

- Introduce a store \(s \) to keep track of the contents of references
 - A map from locations to values
 - "ref \(e \)" allocates a new location and initializes it with (the result of evaluating) \(e \)
 - "! \(e \)" looks up the contents of the location (resulting from evaluating) \(e \) in the store
 - "\(e_1 := e_2 \)" updates the location (resulting from evaluating) \(e_1 \) to hold (the result of evaluating) \(e_2 \), returning the updated store
 - Evaluation now passes along the current store in which to evaluate expressions

Big-step semantics with stores

\[
\begin{align*}
\frac{\langle \nu_0 \rangle \Downarrow \langle \nu_0 \rangle}{\langle e_0, s \rangle \Downarrow \langle l, \nu_0 \rangle} \quad \text{[E-VAL]} \\
\langle e_0, s \rangle \Downarrow \langle (l_1, e_0), \nu_0' \rangle \\
\langle e_0, s \rangle \Downarrow \langle (l_2, e), \nu_0'' \rangle \\
\langle \nu_0'' \rangle \Downarrow \langle v, \nu_0''' \rangle
\end{align*}
\]

Semantics of references

- Add locations \(l \) as a new kind of value (not "ref \(v \)"
 \[
 \begin{align*}
 \frac{\langle e_0, s \rangle \Downarrow \langle l_1, \nu_0 \rangle \quad \dom(s) = \{ e[v] \} }{\langle \text{ref} \ e_0, s \rangle \Downarrow \langle l_1, \nu_0 \rangle} \quad \text{[E-REF]} \\
 \frac{\langle e_0, s \rangle \Downarrow \langle l_2, \nu_0 \rangle \quad \nu = s[l]}{\langle \text{ref} \ e_0, s \rangle \Downarrow \langle l_2, \nu_0 \rangle} \quad \text{[E-DEREF]} \\
 \frac{\langle e_0, s \rangle \Downarrow \langle l_2, \nu_0 \rangle \quad \langle e_0, s \rangle \Downarrow \langle l_3, \nu_0' \rangle \quad s'' = s[v]}{\langle e_0, s \rangle \Downarrow \langle l_2, \nu_0 \rangle} \quad \text{[E-ASSIGN]}
 \end{align*}
 \]

- New semantics
 \[
 \begin{align*}
 \frac{\langle e_0, s \rangle \Downarrow \langle l_2, \nu_0 \rangle \quad \dom(s) = \{ e[v'] \} }{\langle \text{ref} \ e_0, s \rangle \Downarrow \langle l_2, \nu_0 \rangle} \quad \text{[E-REF]} \\
 \frac{\langle e_0, s \rangle \Downarrow \langle l_2, \nu_0 \rangle \quad \nu = s[l]}{\langle \text{ref} \ e_0, s \rangle \Downarrow \langle l_2, \nu_0 \rangle} \quad \text{[E-DEREF]} \\
 \frac{\langle e_0, s \rangle \Downarrow \langle l_2, \nu_0 \rangle \quad \langle e_0, s \rangle \Downarrow \langle l_3, \nu_0' \rangle \quad s'' = s[v]}{\langle e_0, s \rangle \Downarrow \langle l_2, \nu_0 \rangle} \quad \text{[E-ASSIGN]}
 \end{align*}
 \]
Example again

(let r = ref 0 in (let x = (r := 2) in (! r)))

Summary, so far

- Now have also seen simply typed λ-calculus
 - Saw inference rules, derivations
 - Saw several ways to formalize operational semantics and typing rules
- Saw many extensions to this core language
 - Typical of how real PL theorists work
 - Usually orthogonal to underlying semantics
 - References required redoing underlying semantics
- Would you want to use this language?
 - If it had suitable syntactic sugar?

Polymorphic types

- Simply typed λ-calculus is "simply typed", i.e., it has no polymorphic or parameterized types
- "Good" programming languages have polymorphic types
 - And there are tricky issues relating to polymorphic types
- So we'd like to capture the essence of polymorphic types in our calculus
 - So we'll really understand it

Polymorphic λ-calculus

- Also known as **System F**
- Extend type syntax with a forall type

 $\epsilon ::= \ldots \mid \forall X. \epsilon \mid X$

- Now can write down the types of polymorphic values

 $id = \forall T. T \to T$

 $map = \forall a \cdot \forall b. (\forall a \cdot b) \mapsto (\forall a \cdot list) \mapsto (\forall b \cdot list)$

 $nil = \forall T. T \to list$

Values of polymorphic type

- Introduce explicit notation for values of polymorphic type and their instantiations
 - A polymorphic value: $L X. e$
 - $L X. e$ is a function that, given a type τ, gives back e with τ substituted for X
 - Use such values by instantiating them: $e[\tau]$
 - $e[\tau]$ is like function application
 - Syntax:

 $e ::= \ldots \mid L X. e \mid e[\tau]$

 $v ::= \ldots \mid L X. e$

An example

(* fun id x = x; id : 'a->'a *)

$id = \forall a. \forall x : a \mapsto a$

$id[int] 3 fi b

3

$id[bool] fi b$

$1 x:bool. x$
Another example

(* fun doTwice f x = f (f x); doTwice: ('a->'a)->'a->'a *)

doTwice
 " 'a. (f: 'a->'a) -> 'a->'a "

 doTwice [int] succ 3 fi
 (1:int) -> int. f (f x) succ 3 fi
 succ (succ 3) fi

 (int * int)
 succ (succ 3) fi
 3

Yet another example

map " 'a. 'b. fix (1:map:('a->'b)->'a list: 'b list.
 f:('a->'b). 1: 'a list: 'a list.
 fold (case (unfold list) of
 <nil=> nil => <nil=> nil (nil => <nil=> nil)
 <cons=> cons => <cons=> cons (hd=f (#hd r),
 tl=map f (#tl r)))
 " 'a. 'b. ('a->'b) -> 'a list: 'b list

 map [int] [bool] isZero [3,0,5] fi
 * [false,true,false]

 ML infers what the 'l, 'T and ['a] should be

A final example

(* fun cool f = (f 3, f true) *)

cool
 " 1:f:('a:['a->'a]). 1: ('a->'a) -> ('a->'a) -> ('a->'a)

 cool id
 (id: ('a->'a)) -> ('a->'a) -> ('a->'a) -> ('a->'a)
 id

 Note: L. inside of l and fi
 Can't write this in ML; not "prenex" form

Evaluation and typing rules

Evaluation:
 e \Downarrow (L X. e) i \Downarrow v

Typing:
 Γ, X: type ⊢ e : X [T-POLY]
 Γ ⊢ (L X. e) : X [T-INST]
 Γ ⊢ (e[i]) : [X[i]: c]

Different kinds of functions

- 1X. e is a function from values to values
- L X. e is a function from types to values
- What about functions from types to types?
 - Type constructors like fi, list, BTree
 - We want them!
- What about functions from values to types?
 - Dependent types like the type of arrays of
 length n, where n is a run-time computed value
 - Pretty fancy, but would be very cool

Type constructors

What's the "type" of list?
- Not a simple type, but a function from types to types
 - e.g. list(int) = int_list
- There are lots of type constructors that take a
 single type and return a type
 - They all have the same "meta-type"
- Other things take two types and return a type
 (e.g. fi, assoc_list)
- A "meta-type" is called a kind
Kinds

- A type describes a set of values or value constructors (a.k.a. functions) with a common structure
 \(t ::= \text{int} | t_1 \text{fi} t_2 | \ldots \)

- A kind describes a set of types or type constructors with a common structure
 \(k ::= \text{type} | k_1 \Rightarrow k_2 | \ldots \)

- Write \(t :: k \) to say that a type \(t \) has kind \(k \)

```
int :: type
int :: type
list :: type
assoc_list :: type
assoc_list string int :: type
```

Kinded polymorphic \(\lambda \)-calculus

- Also called System F
- Full syntax:
 \[k ::= \text{type} | k_1 \Rightarrow k_2 \]
 \[t ::= \text{int} | t_1 \text{fi} t_2 | X :: k \Rightarrow k_2 | \text{assoc_list} :: k \Rightarrow k_2 \]

- Functions and applications at both the value and the type level
- Arrows at both the type and kind level

Examples

```
pair "
  1':type. 1':type. \{first='a, second='b\} :: type

pair int bool "
  \{first=int, second=bool\} :: \{first=5, second=true\} : \text{pair int bool}

swap "
  \text{assoc_list} :: k \Rightarrow k 
  \text{swap} : \text{assoc_list string int} :: k 
```

Expression typing rules

```
\[ \frac{G \vdash t_1 :: \text{type}}{G, x : t_1 \vdash e :: t_2} \quad \text{T-ABS} \]
\[ \frac{G \vdash (LX::k. e) :: \text{type}}{G \vdash e :: \text{forall} k t} \quad \text{T-POLY} \]
\[ \frac{G \vdash e :: \text{forall} k t \quad G \vdash e_i :: t}{G \vdash e[\text{forall} k t] :: t} \quad \text{T-INST} \]
```

(T-VAR and T-APP unchanged)

Type kinding rules

```
\[ \frac{G \vdash t :: \text{type}}{G \vdash \text{int} :: \text{type} \quad \text{K-INT}} \]
\[ \frac{G \vdash \text{int} :: \text{type} \quad G \vdash t_1 :: \text{type}}{G \vdash t_1 \text{fi} t_2 :: \text{type} \quad \text{K-ARROW}} \]
\[ \frac{G, X::k :: \text{type}}{G \vdash \text{forall} k X :: \text{type} \quad \text{K-FORALL}} \]
\[ \frac{G, X::k :: \text{type}}{G \vdash X :: \text{forall} k \text{t} \quad \text{K-VAR}} \]
\[ \frac{G \vdash \text{forall} k X :: \text{type} \quad G \vdash t :: \text{type}}{G \vdash (\text{forall} k X :: \text{type}) :: \text{type} \quad \text{K-ABS}} \]
```

(T-APP and T-APP unchanged)

Summary

- Saw ever more powerful static type systems for the \(\lambda \)-calculus
 - Simply typed \(\lambda \)-calculus
 - Polymorphic \(\lambda \)-calculus, a.k.a. System F
 - Kinded poly. \(\lambda \)-calculus, a.k.a. System F
- Exponential ramp-up in power, once build up sufficient critical mass
- Real languages typically offer some of this power, but in restricted ways
 - Could benefit from more expressive approaches
Other uses

- Compiler internal representations for advanced languages
 - E.g. FLINT: compiles ML, Java, ...
- Checkers for interesting non-type properties, e.g.:
 - proper initialization
 - static null pointer dereference checking
 - safe explicit memory management
 - thread safety, data-race freedom