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● Recap: invariants and metamorphic testing
● Automated debugging

○ Statistical fault localization
○ Automated patch generation

● Defect prediction
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Recap: invariants and metamorphic testing



Kick-starting the discussion

1. What is a program invariant? What guarantees does 
Daikon provide for its discovered invariants?  How is it 
related to a specification?

2. What is a partial test oracle, a follow-up test input, and 
a metamorphic relation?

3. How are invariants and metamorphic relations similar 
and how are they different? (Context: using them as 
partial test oracles in software testing.)

Post open questions/confusions to the forum.



Recap: Pre/post-conditions and invariants

 1 double avgAbs(double[] nums) {
 2  int n = nums.length;
 3  double sum = 0;
 4

 5  int i = 0;
 6  while (i != n) {
 7    if(nums[i]>0) {
 8      sum = sum + nums[i];
 9    else {
10      sum = sum - nums[i];
11    }
12    i = i + 1;
13  }
14  
15  return sum / n;
16 }

Exit point

Entry point



Recap: data diversity and metamorphic testing

Context:
● Input i1 yields output o1 (“initial input”)
● Expected output for a given input is unknown

Simplest case: related inputs with identical outcomes
● Example:  abs(x) = abs(-x) (“follow-up input”)
● Generalizing:  p(i1) = p(Ri(i1))      

○ The SUT (system under test) p is abs
○ The input relation Ri is negation



Recap: data diversity and metamorphic testing

Context:
● Input i1 yields output o1 (“initial input”)
● Expected output for a given input is unknown
More expressive:  related inputs and related outputs
● Ri:   i1    ⟹    i2 (“follow-up input”)
● Ro:  o1   ⟹    o2                                             (“necessary 

condition”)
● Generalizing:  Ro(p(i1), p(Ri(i1)) = true
● Generalizing:  R(i1, i2, o1, o2) = true

○ Example:  Rabs(a, b, c, d)  =  (a = -b) ⇒ (c = d)
Typical metamorphic test case:

i1 = … random selection …
o1 = p(i1)
i2 = Ri(i1)
o2 = p(i2)
assert Ro(o1, o2)



Recap: data diversity and metamorphic testing



How can you localize a defect?

●



How can you localize a defect?

● Static analysis:  linting, bug finding, verification
● Logging:

○ Assert statement (success then failure brackets the defect)
○ Stack trace
○ Logs
○ Bug reports
○ Performance regression
○ Coverage:  Statistical fault localization:  ranks source code lines

● Compare multiple stack traces/logs/bug reports
● Similarity to previous defects
● Minimized input (e.g., binary search, delta debugging)
● Minimized program

○ Version control history
○ Unit testing

● Differential testing (programs, values; e.g., metamorphic)



Statistical fault localization

“Fault” is here a synonym for “defect” 
(but “fault” also has other meanings)



Fault 
localization 
technique

Program

What is statistical fault localization?

Test suite

Failing
tests

Passing
tests

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum -= nums[i];

  }

  return sum / n;

}



Fault 
localization 
technique

Program Statement ranking

What is statistical fault localization?

Test suite

Failing
tests

Passing
tests

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum -= nums[i];

  }

  return sum / n;

}

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum -= nums[i];

  }

  return sum / n;

}

Most 
suspicious

Least 
suspicious



Program

Statistical fault localization: count success & failure

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum -= nums[i];

  }

  return sum / n;

}



Program
double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum -= nums[i];

  }

  return sum / n;

}

● Run all tests
○ t1 passes

Statistical fault localization: count success & failure



Program
double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum -= nums[i];

  }

  return sum / n;

}

● Run all tests
○ t1 passes
○ t2 passes

Statistical fault localization: count success & failure



Program
double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum -= nums[i];

  }

  return sum / n;

}

● Run all tests
○ t1 passes
○ t2 passes
○ t3 passes

Statistical fault localization: count success & failure



Program
double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum -= nums[i];

  }

  return sum / n;

}

● Run all tests
○ t1 passes
○ t2 passes
○ t3 passes
○ t4 fails

Statistical fault localization: count success & failure



Program
double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum -= nums[i];

  }

  return sum / n;

}

● Run all tests
○ t1 passes
○ t2 passes
○ t3 passes
○ t4 fails
○ t5 fails

Which lines seem most suspicious?

Statistical fault localization: count success & failure

More      =  more suspicious



Program

Spectrum-based fault localization

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum -= nums[i];

  }

  return sum / n;

}

Spectrum-based FL (SBFL)
● Compute suspiciousness per statement
● Given statement s, many ways to combine:

○ passed(s)
○ failed(s)
○ totalpassed
○ totalfailed

    Statement covered by failing test
    Statement covered by passing test

More         statement is more suspicious 



Program

Spectrum-based fault localization

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum -= nums[i];

  }

  return sum / n;

}

Spectrum-based FL (SBFL)
● Compute suspiciousness per statement
● Given statement s, many ways to combine:

○ passed(s)
○ failed(s)
○ totalpassed
○ totalfailed

● Example:

    Statement covered by failing test
    Statement covered by passing test

More         statement is more suspicious 



Program

Spectrum-based fault localization

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum -= nums[i];

  }

  return sum / n;

}

Spectrum-based FL (SBFL)
● Compute suspiciousness per statement
● Example:

Jones et al., Visualization of test information to assist fault localization, ICSE’02

Visualization: the key idea behind Tarantula.



Spectrum-based fault localization

Jones et al., Visualization of test information to assist fault localization, ICSE’02



Program

Spectrum-based fault localization

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum -= nums[i];

  }

  return sum / n;

}

Spectrum-based FL (SBFL)
● Compute suspiciousness per statement
● Example:



Program

Mutation-based fault localization

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum -= nums[i];

  }

  return sum / n;

}

Mutants
double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum += nums[i];

  }

  return sum * n;

}

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum += nums[i];

  }

  return sum * n;

}

double avg(double[] nums) {

  int n = nums.length;

  double sum = 0;

  for(int i=0; i<n; ++i) {

    sum += nums[i];

  }

  return sum / n;

}

    Mutant affects failing test outcome
    Mutant breaks passing test

More         mutant is more suspicious! 

Mutation-based FL (MBFL)
● Compute suspiciousness per mutant
● Aggregate results per statement
● Example:



Common structure of SBFL and MBFL

weighting 
factors

For each element

λ
#  -

#  -

Line# Susp

1 0.2

2 0.5

3 0.0

... ...

sort

Line#

7

6

2

...

Elem Susp

1 ...

2 ...

3 ...

4 ...

5 ...

... ...

collect

(identity  
for SBFL)

Statements, expressions, mutants, etc.

Suspiciousness formula



What design decisions matter?

Defined and explored a design space for SBFL and MBFL
● 4 design factors (e.g., formula)

Pearson et al., Evaluating and Improving Fault Localization, ICSE’17



What design decisions matter?

Defined and explored a design space for SBFL and MBFL
● 4 design factors (e.g., formula)
● 156 FL techniques

Pearson et al., Evaluating and Improving Fault Localization, ICSE’17



What design decisions matter?

Defined and explored a design space for SBFL and MBFL
● 4 design factors (e.g., formula)
● 156 FL techniques

Results
● Most design decisions don’t

matter (in particular for SBFL)
● Definition of test-mutant interaction matters for MBFL
● Barinel, D*, Ochiai, and Tarantula are indistinguishable

Pearson et al., Evaluating and Improving Fault Localization, ICSE’17



What design decisions matter?

Defined and explored a design space for SBFL and MBFL
● 4 design factors (e.g., formula)
● 156 FL techniques

Results
● Most design decisions don’t

matter (in particular for SBFL)
● Definition of test-mutant interaction matters for MBFL
● Barinel, D*, Ochiai, and Tarantula are indistinguishable

Pearson et al., Evaluating and Improving Fault Localization, ICSE’17

Existing SBFL techniques perform best.
No breakthroughs in the MBFL/SBFL design space.



Effectiveness of SBFL and MBFL

● Top-10 useful for practitioners1.
● Top-200 useful for automated patch generation2.

1Kochhar et al., Practitioners’ Expectations on Automated Fault Localization, ISSTA’16
2Long and Rinard, An analysis of the search spaces for generate and validate patch generation systems, ICSE’16

What assumptions underpin these results? Are they realistic?



Automated patch generation



Generate-and-validate Approaches

Automatic patch generation (program repair) 

Automatic
patch generation

What are the main components of a (generate-and-validate) 
patch generation approach?



Generate-and-validate Approaches

Main components:
● Fault localization
● Mutation + fitness evaluation
● Patch validation

Automatic patch generation (program repair) 

Automatic
patch generation



Defect prediction



Defect prediction: the addressed problem

Problem
● QA is limited...



Defect prediction: the addressed problem

Problem
● QA is limited...by time and money.



Defect prediction: the addressed problem

Problem
● QA is limited...by time and money.
● How should we allocate limited QA resources?



Defect prediction: the addressed problem

Problem
● QA is limited...by time and money.
● How should we allocate limited QA resources?

○ Focus on components that are most error-prone.
○ Focus on components that are most likely to fail in the field.

 How do we know what components are critical or error-prone?



Defect prediction: a bird’s-eye view

Defect 
prediction

Metrics  Bugginess

Model
● Learn a model from historic data (same project vs. different project)



Defect prediction: a bird’s-eye view

Defect 
prediction

Metrics  Bugginess

Model
● Learn a model from historic data (same project vs. different project)

Predictions
● Classification: is a file/method buggy
● Ranking: how many bugs does a file/method contain

Granularity
● Most research has focused on file-level granularity



Defect prediction: a bird’s-eye view

Defect 
prediction

Metrics  Bugginess

Model
● Learn a model from historic data (same project vs. different project)

Predictions
● Classification: is a file/method buggy
● Ranking: how many bugs does a file/method contain

Granularity
● Most research has focused on file-level granularity

Which type of prediction and what granularity are most useful?



Defect prediction: a bird’s-eye view

Defect 
prediction

Metrics  Bugginess

Model
● Learn a model from historic data (same project vs. different project)

Predictions
● Classification: is a file/method buggy
● Ranking: how many bugs does a file/method contain

Granularity
● Most research has focused on file-level granularity

What types of metrics matter?



Defect prediction: metrics

Change metrics
● Source-code changes
● Code churn
● Previous bugs

Code metrics
● Complexity metrics (e.g., size, McCabe, dependencies)
● Design metrics (e.g., inheritance hierarchy)

Organizational metrics
● Team structure
● Contribution structure
● Communication

What metrics are most important?



Defect prediction: some results



How does your compiler optimize code?

● Constant folding, common subexpression elimination 
(avoid computations)

● Liveness analysis (free up registers)
● …

A dataflow analysis estimates the value of each expression

Teaser:  static analysis



Designing a static analysis

Main challenges:

● Choose an abstract domain; example:  even, odd
○ Must be a lattice:  each pair of elements has a unique lub 
○ Needs a top (unknown) and a bottom element

● Define a transfer function for each language construct

Iterate to a fixed point, over the control flow graph

〈 x is odd; y is odd 〉 
   y = x++;
〈 x is even; y is odd 〉 



In-class exercise: fault localization


