
Mutation-based testing
UW CSE P 504

Today

● Mutation-based testing
■ Fake bugs ≈ real bugs
■ Productive mutants
■ Mutant subsumption

● Coverage-based vs. mutation-based testing

Mutation-based testing: the basics

Mutation in brief

Coverage and mutation measure test suite quality (“adequacy”)

● coverage(S) = what % of the program is executed by S
● mutation_score(S) = what % of fake bugs are detected by

S?
○ Which fake bugs are chosen?

Terminology:

● A mutation is a small program change
that might be defective

● A mutant is a program with a fake bug
● A mutation operator creates mutations

Uses for test suite quality metrics (e.g., coverage)

● Is test suite S good enough?*
● Which test suite is better, S1 or S2?*
● Prioritize tests within the suite.
● Should t be added to S? Compare S to S ∪ {t}.
● Should t be removed from S? Compare S to S \ {t}.
● What tests should I write to improve S?

Mutation
analysis

Mutation analysis: computes an adequacy score

Test suite

Mutation
score

mutation score =
% of mutants that
fail at least one
test

Create many
mutants

Run the test suite
on each mutant

(expensive!)

Mutation
coverage

Mutation analysis: computes an adequacy score

Test suite

Mutation
score

coverage

mutation score =
% of mutants that
fail at least one
test

Create many
mutants

Run the test suite
on each mutant

(expensive!)

Mutation coverage: computes a quality score

Mutation testing: guides the creation of tests

Program Test suite

Tests can be created by a person or a tool

When to stop creating tests?

mutantMutation
testing

test

Mutation
test

prompting

Mutation testing: guides the creation of tests

Program Test suite

Tests can be created by a person or a tool

When to stop creating tests?

mutant

Mutation-guided test prompting

test

Mutation test
prompting

Mutation testing: mechanism

Program

Mutation testing: mutant generation

Program

lhs < rhs lhs <= rhs

lhs < rhs lhs != rhs

stmt no-op

Mutation test
prompting

Mutation operators

Mutation testing: mutant generation

lhs < rhs lhs <= rhs

lhs < rhs lhs != rhs

stmt no-op

Program Mutants

Mutation operators

Mutation testing: mutant generation

lhs < rhs lhs <= rhs

lhs < rhs lhs != rhs

stmt no-op

Program Mutants

Mutation Mutant

Mutation operators

Mutation testing: mutant generation

lhs < rhs lhs <= rhs

lhs < rhs lhs != rhs

stmt no-op

Program Mutants

Mutation operators

Mutation testing: mutant generation

Mutants

lhs < rhs lhs <= rhs

lhs < rhs lhs != rhs

stmt no-op

Program

Mutation operators

Run the test suite
on each mutant

(expensive!)

mutation score =
% of mutants that
fail at least one
test

Mutation testing: scoring

MutantsProgram

Assumptions
● Mutants are coupled to real faults
● Mutant detection is correlated with real-fault detection

https://homes.cs.washington.edu/~rjust/publ/mutants_real_faults_fse_2014.pdf,
https://homes.cs.washington.edu/~rjust/publ/mutation_testing_practices_icse_2021.p
df

https://homes.cs.washington.edu/~rjust/publ/mutants_real_faults_fse_2014.pdf
https://homes.cs.washington.edu/~rjust/publ/mutation_testing_practices_icse_2021.pdf
https://homes.cs.washington.edu/~rjust/publ/mutation_testing_practices_icse_2021.pdf

Example mutant

Original program:
public int min(int a, int b) {

 return a < b ? a : b;

}

Mutant 1:
public int min(int a, int b) {

 return a;

}

Another example mutant

Original program:
public int min(int a, int b) {

 return a < b ? a : b;

}

Mutant 2:
public int min(int a, int b) {

 return b;

}

Yet another example mutant

Original program:
public int min(int a, int b) {

 return a < b ? a : b;

}

Mutant 3:
public int min(int a, int b) {

 return a >= b ? a : b;

}

Last example mutant (I promise)

Original program:
public int min(int a, int b) {

 return a < b ? a : b;

}

Mutant 4:
public int min(int a, int b) {

 return a <= b ? a : b;

}

Mutation testing: exercise

Original program:
public int min(int a, int b) {

 return a < b ? a : b;

}

Mutants:
M1: return a;

M2: return b;

M3: return a >= b ? a : b;

M4: return a <= b ? a : b;

For each mutant, provide a test case that detects it
(i.e., passes on the original program but fails on the mutant)

In other words, create a test suite of maximal mutant score.

Mutation testing: exercise

a b Asserted
result

M1 M2 M3 M4

1 2 1 1 2 2 1

1 1 1 1 1 1 1

2 1 1 2 1 2 1

Original program:
public int min(int a, int b) {

 return a < b ? a : b;

}

M4 cannot be detected (equivalent mutant).

Mutants:
M1: return a;

M2: return b;

M3: return a >= b ? a : b;

M4: return a <= b ? a : b;

Mutation testing: exercise

Original program:
public int min(int a, int b) {

 return a < b ? a : b;

}

Which mutant(s) should we show to a developer,
to prompt the developer to write tests?

Mutants:
M1: return a;

M2: return b;

M3: return a >= b ? a : b;

M4: return a <= b ? a : b;

a b Asserted
result

M1 M2 M3 M4

1 2 1 1 2 2 1

1 1 1 1 1 1 1

2 1 1 2 1 2 1

Mutation testing: summary

a b Original M1 M2 M3 M4
1 2 1 1 2 2 1

1 1 1 1 1 1 1

2 1 1 2 1 2 1

Original program:
public int min(int a, int b) {

 return a < b ? a : b;

}

Redundant Equivalent

Mutants:
M1: return a;

M2: return b;

M3: return a >= b ? a : b;

M4: return a <= b ? a : b;

Detrimental mutants

a b Original M1 M2 M3 M4
1 2 1 1 2 2 1

1 1 1 1 1 1 1

2 1 1 2 1 2 1

● Redundant mutant: is killed if the other mutants are killed
○ Inflates the mutant detection ratio
○ Hard to assess progress and remaining effort

● Equivalent mutant: behaves the same as the original program
○ Max mutant detection ratio ≠ 100%
○ Waste resources (CPU and human time)

What are analogous
problems in statement
coverage?

Mutation testing vs. mutation analysis

Mutation testing vs. mutation analysis
Mutation test prompting vs. mutation coverage

Mutation
Testing

Primary
output is
new tests.

MUTANTSPROGRAM TESTS

Mutation testing vs. mutation analysis
Mutation test prompting vs. mutation coverage

Mutation
Testing

Primary
output is
new tests.

MUTANTSTESTS

Mutation
Analysis

Primary output is
adequacy score for
existing tests.

80%
ADEQUACY

SCORE

MUTANTSPROGRAM TESTS

PROGRAM

Mutation testing vs. mutation analysis
Mutation test prompting vs. mutation coverage

Mutation testing vs. mutation analysis

Mutation
Testing

Primary
output is
new tests.

MUTANTSTESTS

Mutation
Analysis

Primary output is
adequacy score for
existing tests.

80%
ADEQUACY

SCORE

MUTANTSPROGRAM TESTS

PROGRAM

How expensive is mutation testing?
Is the mutation score meaningful?

Mutation test prompting vs. mutation coverage

Mutation-based testing: productive mutants

Detectable vs. productive mutants

Historically
● Detectable mutants are good tests
● Equivalent mutants are bad no tests

A more nuanced view
● Detectable vs. equivalent is too simplistic
● Productive mutants elicit effective tests, but

○ detectable mutants can be useless, and
○ equivalent mutants can be useful!

An Industrial Application of Mutation Testing: Lessons, Challenges, and Research Directions (Reading 1)

The core question here concerns test-goal utility
(applies to any adequacy criterion).

https://homes.cs.washington.edu/~rjust/publ/industrial_mutation_icst_2018.pdf

Detectable vs. productive mutants

Historically
● Detectable mutants are good tests
● Equivalent mutants are bad no tests

A more nuanced view
● Detectable vs. equivalent is too simplistic
● Productive mutants elicit effective tests, but

○ detectable mutants can be useless, and
○ equivalent mutants can be useful!

An Industrial Application of Mutation Testing: Lessons, Challenges, and Research Directions (Reading 1)

The notion of productive mutants is fuzzy!
A mutant is productive if it is
1. detectable and elicits an effective test or
2. equivalent and improves code quality or knowledge

https://homes.cs.washington.edu/~rjust/publ/industrial_mutation_icst_2018.pdf

Productive mutants: mutation testing at Google

Practical Mutation Testing at Scale: A view from Google (Reading 3)

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9524503

Practical Mutation Testing at Scale: A view from Google (Reading 3)

Productive mutants: mutation testing at Google

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9524503

Detectable vs. productive mutants (1)
Original program

public double getAvg(double[] nums) {
 double sum = 0;
 int len = nums.length;

 for (int i = 0; i < len; ++i) {
 sum = sum + nums[i];
 }

 return sum / len;
}

Mutant
public double getAvg(double[] nums) {
 double sum = 0;
 int len = nums.length;

 for (int i = 0; i < len; ++i) {
 sum = sum * nums[i];
 }

 return sum / len;
}

Is the mutant detectable?

Detectable vs. productive mutants (1)
Original program

public double getAvg(double[] nums) {
 double sum = 0;
 int len = nums.length;

 for (int i = 0; i < len; ++i) {
 sum = sum + nums[i];
 }

 return sum / len;
}

Mutant
public double getAvg(double[] nums) {
 double sum = 0;
 int len = nums.length;

 for (int i = 0; i < len; ++i) {
 sum = sum * nums[i];
 }

 return sum / len;
}

The mutant is detectable, but is it productive?

Detectable vs. productive mutants (1)
Original program

public double getAvg(double[] nums) {
 double sum = 0;
 int len = nums.length;

 for (int i = 0; i < len; ++i) {
 sum = sum + nums[i];
 }

 return sum / len;
}

Mutant
public double getAvg(double[] nums) {
 double sum = 0;
 int len = nums.length;

 for (int i = 0; i < len; ++i) {
 sum = sum * nums[i];
 }

 return sum / len;
}

The mutant is detectable, but is it productive? Yes!

Detectable vs. productive mutants (2)
Original program

public double getAvg(double[] nums) {
 int len = nums.length;
 double sum = 0;
 double avg = 0;

 for (int i = 0; i < len; ++i) {
 avg = avg + (nums[i] / len);
 sum = sum + nums[i];
 }

 return sum / len;
}

Mutant
public double getAvg(double[] nums) {
 int len = nums.length;
 double sum = 0;
 double avg = 0;

 for (int i = 0; i < len; ++i) {
 avg = avg * (nums[i] / len);
 sum = sum + nums[i];
 }

 return sum / len;
}

Is the mutant detectable?

Detectable vs. productive mutants (2)
Original program

public double getAvg(double[] nums) {
 int len = nums.length;
 double sum = 0;
 double avg = 0;

 for (int i = 0; i < len; ++i) {
 avg = avg + (nums[i] / len);
 sum = sum + nums[i];
 }

 return sum / len;
}

Mutant
public double getAvg(double[] nums) {
 int len = nums.length;
 double sum = 0;
 double avg = 0;

 for (int i = 0; i < len; ++i) {
 avg = avg * (nums[i] / len);
 sum = sum + nums[i];
 }

 return sum / len;
}

The mutant is not detectable, but is it unproductive?

Detectable vs. productive mutants (2)
Original program

public double getAvg(double[] nums) {
 int len = nums.length;
 double sum = 0;
 double avg = 0;

 for (int i = 0; i < len; ++i) {
 avg = avg + (nums[i] / len);
 sum = sum + nums[i];
 }

 return sum / len;
}

Mutant
public double getAvg(double[] nums) {
 int len = nums.length;
 double sum = 0;
 double avg = 0;

 for (int i = 0; i < len; ++i) {
 avg = avg * (nums[i] / len);
 sum = sum + nums[i];
 }

 return sum / len;
}

The mutant is not detectable, but is it unproductive? No!

Detectable vs. productive mutants (3)
Original program

...

Set cache = new HashSet(a * b);

...

Mutant
...

Set cache = new HashSet(a + b);

...

Is the mutant detectable?

Detectable vs. productive mutants (3)
Original program

...

Set cache = new HashSet(a * b);

...

Mutant
...

Set cache = new HashSet(a + b);

...

The mutant is detectable, but is it productive?

Detectable vs. productive mutants (3)
Original program

...

Set cache = new HashSet(a * b);

...

Mutant
...

Set cache = new HashSet(a + b);

...

The mutant is detectable, but is it productive? No!

Mutation-based testing: mutant subsumption

Mutant subsumption

Mutant not detected

Mutant detected
(assertion)

Mutant detected
(exception)

Prioritizing Mutants to Guide Mutation Testing (Reading 2)

https://homes.cs.washington.edu/~rjust/publ/prioritizing_mutants_tcap_icse_2022.pdf

DMSG: Dynamic Mutant Subsumption Graph

DMSG

Prioritizing Mutants to Guide Mutation Testing (Reading 2)

https://homes.cs.washington.edu/~rjust/publ/prioritizing_mutants_tcap_icse_2022.pdf

Coverage-based vs. mutation-based testing

See dedicated Slides.

https://homes.cs.washington.edu/~rjust/courses/CSEP504/2022_10_24_adequacy.pdf

Teaser: delta debugging

From lecture 2: binary search is great. Example: git bisect.

What are the assumptions or limitations of binary search?

Teaser: delta debugging

From lecture 2: binary search is great. Example: git bisect.

What are the assumptions or limitations of binary search?

● You are looking for one thing
● The search space is monotonic
● Every test yields “yes” or “no”

Teaser: delta debugging

From lecture 2: binary search is great. Example: git bisect.

What are the assumptions or limitations of binary search?

● You are looking for one thing
● The search space is monotonic
● Every test yields “yes” or “no”

What can you do when these conditions are not met?

Examples: an image crashes a viewer
A program crashes a compiler
A webpage crashes a browser
How can you minimize these?

Searching for a
subset of an input

