Version control and Git

CSE P 504

Why use version control?

Why use version control?

Why use version control? — backup/restore

”

Essay Essay FINAL Essay FINAL Essay FINAL

11:51pm 11:57pm 11:58pm 11:59pm

Why use version control? — teamwork

z g

g o

Common App Common App Common App Common App Common App Common App Common App Common App
Essay Essay EDITED Essay FINAL Essay FINAL Essay FINAL Essay OKAY THIS Essay REVISED Essay REVISED
FINAL FINAL REVISED IS THE FINAL FINAL
ONE

How are you going to make sense of this?

Goals of a version control system

Version control records changes to a set of files over time.

This enables you to:

o Keep a history of your work
m Summary commit title
m See which lines were co-changed

o Checkpoint specific versions (known good state)
m Recover specific state

o Binary search over revisions
m Find the one that introduced a defect

o Undo arbitrary changes
m Without affecting prior or subsequent changes

o Maintain multiple releases of your product

Who uses version control?

Everyone should use version control
e Large teams (100+ developers)
e Small teams (2-10+ developers)

e Yourself (and your future self)
o Multiple features or multiple computers

Example application domains

e Software development

e Experiments (infrastructure and data)
e Documents

Version control for documents Versionisony

Common App
Essay

11:51pm

File Edit View Insert Format
0 New

£ Open

-] Import slides

D Make a copy
[Save as Google Slides

&+ Share
& Email

4 Download

2. Rename
5 Move
(&, Add shortcut to Drive

T Move to trash

£ Version history

® Make available offline

(@ Details

@ Language

[Page setup

[Q Print preview

& Print

All versions

Tuesday

slide Arrange Tools Poll Everywhere Help Acces: » January 9, 11:52AM
Current version
. - B 9 N\~ Background ® Jason Hoffman

%0
ad R i U i L e B B S B December 2023

relR e P r

» December 5, 2023, 2:54PM

® Jason Hoffman

November 2023

» November 21, 2023, 11:10AM

@ Jason Hoffman

» November 15, 2023, 3:22PM

® Jason Hoffman

» November 15, 2023, 2:36 PM

@ Jason Hoffman

» November 3, 2023, 4:13PM
Name current version ® Jason Hoffman

See version history 38+Option+Shift+H October 2023

» October 24, 2023, 11:42AM

> @ Jason Hoffman
» October 17, 2023, 12:19 PM

® Jason Hoffman

%p July 2023

July 24, 2023, 3:18PM

@ Jason Hoffman

» July 24, 2023, 2:43PM

@ Jason Hoffman

Version control

Working by yourself

& Reposnory
(database of
_ edits/versions) /

T

f Workmg copy

(make edits here)

Centralized version control (the old way)

e One central repository.
It stores a history of project versions.

e Each user has a working copy.

e A user commits file changes
to the repository.

e Committed changes are immediately
visible to teammates who update.

e Examples: SVN (Subversion), CVS.

Centralized version control

Server

Repository

Working Working Working
copy copy copy

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

Distributed version control (the new way)

Distributed version control in git

Server

e Multiple copies of a repository. Each
stores its own history of project

. Repository
versions. .
906\0 Gl |2 D G{C/)
e FEach user commits to a local 7O HRE “s,
(private) repository. Repository Repository Repository
. . o~ ,8/ ~ & N &
e All committed changes remain local (gg/ js«' 55'/
G, (&7 (Y
unless pushed to another repository. Working Working Working
copy copy copy
e No external changes are visible
Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

unless fetched from another repository.

e Examples: Git, Hg (Mercurial).

2 different version control modes

Centralized version control

Server
Repository
* =115 Y,
&7 El IR aoni
ST | |3 My

W 8 4] 74
Working Working Working
copy copy copy

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

Distributed version control in git

Server
Repository
Vs
o2 gE TN
=0 al |5 “,

Repository Repository Repository
gy 99 99
Working Working Working
copy copy copy

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

Branch
VS
Clone

Vs
Fork

Multiple versions of your program

What if you have to support:
e Version 1.0.4 and version 2.0.0
e Windows and macOS

e Adding a feature

e Fixing a bug

Git has 3 ways to represent multiple histories:

e Branch: Start a parallel history of changes to the code in the
repository

e Clone: Make a copy of the repository to work on code changes

e Fork: Make a copy the repository that will not necessarily be
merged back with original (but can be through a pull request)

Branches

- A branch is a history of program versions

- There is one main development branch (main, master, trunk)
o It should always pass tests and be ready to ship or deploy

a commit represents HEAD is the most
one state of the project recent commit

main

branch U/

Branches

« Other branches are alternate histories

- You can have many branches
o Lightweight - every work item (feature, bug) has its own branch
m Why is this a good practice?
- Branches (histories) can get out of sync

main
branch

feature O O

branch

Merging branches

- Branches can get out of sync
« Merge incorporates changes from one branch into another
- From feature branch: git merge main

« Life goal of a branch is to be merged into main and deleted as
quickly as possible
o Done via a pull request, not via git merge

a merge commit has
more than one parent

main
branch

feature O O

branch

3 ways to resolve a pull request

main N\
branch

feature

branch
main

branch

feature
branch

main
branch

feature
branch

3 ways to resolve a pull request

main
branch

()

merege
feature &

branch

main
branch

feature
branch

main
branch

feature
branch

3 ways to resolve a pull request

main
branch

()

merege
feature &

branch

main
branch

feature rebase

branch

main
branch

feature
branch

3 ways to resolve a pull request

main
branch

()

merge

feature
branch
main
branch
feature rebase
branch O
main
branch
squash
feature & merge

branch

3 ways to resolve a pull request

main ()
branch ‘
merge
feature &
branch
main

branch

feature O Dase
branch
5ame
o project
branch ‘ ‘ ‘ ‘ ‘ ‘ state
squash

feature
branch ‘ ‘ & merge

3 ways to resolve a pull request

-—
main ()
branch
mer
feature erge
branch
same diff -— .
main
S (0.,0.90.0
feature O Dase
branch
S5ame
. e project
main
o —O—0O0—O—C0O——~C () state
squash

feature
branch ‘ ‘ & merge

3 ways to resolve a pull request

main
branch

feature
branch

main M\
branch Oi O O o\ 9,0,0,0

What are the pros —O—Q \ O Dase

and cons of each? dame
. e project
Main
bralnch ‘ ‘ ‘ ‘ ‘ ‘ state
squash

feature
branch ‘ ‘ & merge

3 ways to resolve a pull request

main
branch

()

feature
branch

main () () (>)
branch /

Create a merge commit

All commits from this branch will be added t«

5ame
project
state

Squash and merge

A commits from this branch be r\
mb 1to one co the base branch. u

squash
& merge

Merge conflicts

Conflicts

e \When you run git merge, git attempts to retain all the changes
from each branch
e A conflict arises when two users change the same line of a file

master

Merge conflict!

alice/master

e The person doing the merge needs to resolve the conflict by
manual inspection

git's merge tools
Conflicts can make mistakes

e \When you run git merge(git attempts jo retain all the changes

from each branch
e A conflict arises when two users change the same line of a file

master

Merge conflict!

Hello,
dog!

alice/master

e The person doing the merge needs to resolve the conflict by
manual inspection

Merge Algorithm: May Fail to Make a Merge

1 def main():
2 n =128

e Line-by-line merge . print(m
yields a conflict X ntialcode X
P |nspection reveals 1 def main(): 1 def main():
2 n_people = 128 2 n = 64
they can be merged 3 print(n_people) 3 print(n)
Change 1 R\ ’ Change 2
Still works despite R

2 changes ; print(n_people)

Merged (unachievable by
line-based merge)

Merge Algorithm: Falsely Successful Merge

def mult(a,b):
return axb

def main():
a=3
print(a)

x Initial code \

e Line-by-line merge
yields no conflicts
(“clean merge”)

w > w Do Ll

® ReSUItlng COde IS def multiply(a,b): def mult(a,b):

1 1
. 2 return axb 2 return axb
Ir](:C)rrfB(:t 3 def main(): 5 def main():
4 a=3 4 a = mult(3,5)
5 print(a) 5 print(a)
Change 1 a x Change 2
1 def multiply(a,b):
2 return axb
Function name > » def main():
4 a = mult(3,5)
changed 5 Srint(a)

Merged (incorrectly)

Rebasing
(= rewriting the commit history)

@ D’On,t. ‘ ‘f“: V
WORLD OF PAIN

Any questions?

How to avoid merge conflicts

Synchronize with teammates often

® Pull often

O Avoid getting behind the main branch

® Push as often as practical

O Don’t destabilize the main build

O Use continuous integration (automatic testing on each push, even for

branches)

O Avoid long-lived branches

Commit often

® On the main branch (or any long-lived branch):

1. Every commit should address one concept (see next
slide)

2. Every concept should be in one commit

3. Tests should always pass

® On feature/bugfix branches:

1. Don’t worry about the commit history
2. From branch back into main: squash and merge

Make single-concern branches and commits

They are easier to understand, review, merge, revert.
Ways to achieve single-concern branches and commits:

® Do only one task at a time

O Commit after each one

® (Create a branch for each simultaneous task

O Easier to share work with teammates | CEEDE
working copy
O Single-concern branch = Single-concern commit on main per branch.

O Requires a bit of bookkeeping to keep track of them all

® Do multiple tasks in one working copy with multiple
branches

O Commit only specific files, or only specific parts of files (use Git’s
“staging area” with git add; can interactively choose parts of files)

Do not commit all files

Use a .gitignore file

Don’t commit:

e Binary files

e Logfiles

e (Generated files
e Temporary files

Plan ahead to avoid merge conflicts

® Modularize your work
O Divide work so that individuals or subteams “own” parts of the code
O Other team members only need to understand its specification

O Requires good documentation and testing

® Communicate about changes that may conflict

o Examples (rare!): reformat whole codebase, move directories, rename
fundamental data structures

Cloning

« git clone creates a local copy of the repo and a working
copy of the files for editing

- Ideal for contributing to a repo alongside other
developers

e git push sends (GitHub(remote)
local changes to
remote repo

Server
Repository Clone
B £l Ny (copy on local host)
9“\\ a = D(/s
Repository Repository Repository
Working Working Working \J/
copy copy copy

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

Fo rking (GitHub concept, not a git concept)

- Creates a new, unrelated repository (GitHub project)
that is initially an exact copy

- Changes to either repository do not affect the other

- Allows you to evolve the repo without impacting the
original

- |If original repo is deleted, forked repo will still exist

GitHub Fork
(full independent copy)

Lo T LRI\

- |t’s possible to update the original but only with pull
requests (original owner approves or not)

Typical workflow

git pull
git branch name
git checkout name
Repeat:
<edit files, run tests>
[git add]
glit commit
git pull
<run tests again>
glit push

<make a GitHub pull request>

Local . Remote

remote

working S aglng oca
directory area repo

repo

_h

= git fetch && glt ‘merge

Git’s confusing vocabulary

index: staging area (located .git/index)

content: git tracks what is in a file, not the file itself

tree: git's representation of a file system

working tree: tree representing the local working copy

staged: ready to be committed

commit: a snapshot of the working tree (a database entry)

ref. pointer to a commit object

branch: just a (special) ref; semantically: represents a line of dev
HEAD: a ref pointing to the working tree

Learn more!

e Other resources: explanations, tips, best practices
o Michael Ernst: VC Concepts and Pull Requests

Atlassian merge vs rebase

Git branching and merging

Video tutorial “Git, GitHub, & GitHub Desktop”

Learn Git Branching

© O O O

https://homes.cs.washington.edu/~mernst/advice/version-control.html
https://homes.cs.washington.edu/~mernst/advice/github-pull-request.html
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://www.youtube.com/watch?v=8Dd7KRpKeaE
https://learngitbranching.js.org/

