
Version control and Git
CSE P 504



Why use version control?

11:51pm



Why use version control?

11:51pm 11:57pm



Why use version control?  – backup/restore

11:51pm 11:57pm 11:58pm 11:59pm

❌



Why use version control?  – teamwork

5

How are you going to make sense of this?



Goals of a version control system

Version control records changes to a set of files over time.  

This enables you to:

○ Keep a history of your work
■ Summary commit title
■ See which lines were co-changed

○ Checkpoint specific versions (known good state)
■ Recover specific state

○ Binary search over revisions
■ Find the one that introduced a defect

○ Undo arbitrary changes
■ Without affecting prior or subsequent changes

○ Maintain multiple releases of your product



Who uses version control?

Everyone should use version control
● Large teams (100+ developers)
● Small teams (2-10+ developers)
● Yourself (and your future self)

○ Multiple features or multiple computers

Example application domains
● Software development
● Experiments (infrastructure and data)
● Documents



Version control for documents

11:51pm



Version control

Working by yourself



● One central repository.
It stores a history of project versions.

● Each user has a working copy.

● A user commits file changes
to the repository.

● Committed changes are immediately 
visible to teammates who update.

● Examples: SVN (Subversion), CVS.

Centralized version control (the old way)



Distributed version control (the new way)

● Multiple copies of a repository. Each 
stores its own history of project 
versions.

● Each user commits to a local
(private) repository.

● All committed changes remain local
unless pushed to another repository.

● No external changes are visible
unless fetched from another repository.

● Examples: Git, Hg (Mercurial).



2 different version control modes



Branch
vs
Clone
Vs
Fork



Multiple versions of your program

What if you have to support:
• Version 1.0.4 and version 2.0.0
• Windows and macOS
• Adding a feature
• Fixing a bug

Git has 3 ways to represent multiple histories:
● Branch: Start a parallel history of changes to the code in the 

repository
● Clone: Make a copy of the repository to work on code changes
● Fork: Make a copy the repository that will not necessarily be 

merged back with original (but can be through a pull request)



Branches

• A branch is a history of program versions
• There is one main development branch (main, master, trunk)

○ It should always pass tests and be ready to ship or deploy

main 
branch

a commit represents 
one state of the project

HEAD is the most 
recent commit



Branches

• Other branches are alternate histories
• You can have many branches

○ Lightweight - every work item (feature, bug) has its own branch
■ Why is this a good practice?

• Branches (histories) can get out of sync

main 
branch

feature
branch



Merging branches

• Branches can get out of sync
• Merge incorporates changes from one branch into another
• From feature branch:  git merge main

• Life goal of a branch is to be merged into main and deleted as 
quickly as possible
○ Done via a pull request, not via  git merge

main 
branch

feature
branch

a merge commit has 
more than one parent



3 ways to resolve a pull request

feature
branch

main 
branch

feature
branch

main 
branch

feature
branch

main 
branch



3 ways to resolve a pull request

feature
branch

main 
branch

feature
branch

main 
branch

feature
branch

main 
branch

merge



3 ways to resolve a pull request

feature
branch

main 
branch

feature
branch

main 
branch

feature
branch

main 
branch

merge

rebase



3 ways to resolve a pull request

feature
branch

main 
branch

feature
branch

main 
branch

feature
branch

main 
branch

merge

rebase

squash 
& merge



3 ways to resolve a pull request

feature
branch

main 
branch

feature
branch

main 
branch

feature
branch

main 
branch

merge

rebase

squash 
& merge

same 
project 
state



3 ways to resolve a pull request

feature
branch

main 
branch

feature
branch

main 
branch

feature
branch

main 
branch

merge

rebase

squash 
& merge

same 
project 
state

same diff



3 ways to resolve a pull request

feature
branch

main 
branch

feature
branch

main 
branch

feature
branch

main 
branch

merge

rebase

squash 
& merge

same 
project 
state

same diff

What are the pros 
and cons of each?



3 ways to resolve a pull request

feature
branch

main 
branch

feature
branch

main 
branch

feature
branch

main 
branch

merge

rebase

squash 
& merge

same 
project 
state

same diff



Merge conflicts



Conflicts

● The person doing the merge needs to resolve the conflict by 
manual inspection

● When you run git merge, git attempts to retain all the changes 
from each branch

● A conflict arises when two users change the same line of a file



Conflicts

● The person doing the merge needs to resolve the conflict by 
manual inspection

● When you run git merge, git attempts to retain all the changes 
from each branch

● A conflict arises when two users change the same line of a file

git’s merge tools 
can make mistakes



Merge Algorithm: May Fail to Make a Merge

● Line-by-line merge 
yields a conflict

● Inspection reveals 
they can be merged

Initial code

Change 1 Change 2

Merged (unachievable by 
line-based merge)

Still works despite 
2 changes



Merge Algorithm: Falsely Successful Merge

● Line-by-line merge 
yields no conflicts 
(“clean merge”)

● Resulting code is 
incorrect

Initial code

Change 1 Change 2

Merged (incorrectly)

Function name 
changed



Rebasing
(= rewriting the commit history)

Don’t.

Any questions?



How to avoid merge conflicts



Synchronize with teammates often

● Pull often

○ Avoid getting behind the main branch

● Push as often as practical

○ Don’t destabilize the main build

○ Use continuous integration (automatic testing on each push, even for 
branches)

○ Avoid long-lived branches



Commit often

● On the main branch (or any long-lived branch):
1. Every commit should address one concept (see next 
slide)
2. Every concept should be in one commit
3. Tests should always pass

● On feature/bugfix branches:
1. Don’t worry about the commit history
2. From branch back into main: squash and merge



Make single-concern branches and commits

They are easier to understand, review, merge, revert.
Ways to achieve single-concern branches and commits:
● Do only one task at a time

○ Commit after each one

● Create a branch for each simultaneous task
○ Easier to share work with teammates

○ Single-concern branch ⇒ Single-concern commit on main

○ Requires a bit of bookkeeping to keep track of them all

● Do multiple tasks in one working copy with multiple 
branches
○ Commit only specific files, or only specific parts of files (use Git’s 

“staging area” with git add; can interactively choose parts of files)

I create a 
working copy 
per branch.



Do not commit all files

Use a .gitignore file

Don’t commit:
● Binary files
● Log files
● Generated files
● Temporary files



Plan ahead to avoid merge conflicts

● Modularize your work

○ Divide work so that individuals or subteams “own” parts of the code

○ Other team members only need to understand its specification

○ Requires good documentation and testing

● Communicate about changes that may conflict
○ Examples (rare!): reformat whole codebase, move directories, rename 

fundamental data structures



Cloning

Clone
(copy on local host)

• git clone creates a local copy of the repo and a working 
copy of the files for editing

• Ideal for contributing to a repo alongside other 
developers

 GitHub (remote)• git push sends 
local changes to 
remote repo



Forking (GitHub concept, not a git concept)

• Creates a new, unrelated repository (GitHub project) 
that is initially an exact copy

• Changes to either repository do not affect the other
• Allows you to evolve the repo without impacting the 

original 
• If original repo is deleted, forked repo will still exist

Fork
(full independent copy)

• It’s possible to update the original but only with pull 
requests (original owner approves or not)

GitHub



Typical workflow

git pull
git branch name
git checkout name
Repeat:

<edit files, run tests>
[git add]
git commit
git pull

<run tests again>
git push
<make a GitHub pull request>



Git’s confusing vocabulary

● index: staging area (located .git/index)
● content: git tracks what is in a file, not the file itself
● tree: git's representation of a file system
● working tree: tree representing the local working copy
● staged: ready to be committed
● commit: a snapshot of the working tree (a database entry)
● ref: pointer to a commit object
● branch: just a (special) ref; semantically: represents a line of dev
● HEAD: a ref pointing to the working tree



Learn more!

● Other resources:  explanations, tips, best practices
○ Michael Ernst: VC Concepts and Pull Requests
○ Atlassian merge vs rebase 
○ Git branching and merging
○ Video tutorial “Git, GitHub, & GitHub Desktop” 
○ Learn Git Branching

https://homes.cs.washington.edu/~mernst/advice/version-control.html
https://homes.cs.washington.edu/~mernst/advice/github-pull-request.html
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://www.youtube.com/watch?v=8Dd7KRpKeaE
https://learngitbranching.js.org/

