Version control and Git

CSE P 504



Why use version control?




Why use version control?




Why use version control? — backup/restore

”

Essay Essay FINAL Essay FINAL Essay FINAL

11:51pm 11:57pm 11:58pm 11:59pm



Why use version control? — teamwork
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How are you going to make sense of this?



Goals of a version control system

Version control records changes to a set of files over time.

This enables you to:

o Keep a history of your work
m  Summary commit title
m See which lines were co-changed

o Checkpoint specific versions (known good state)
m Recover specific state

o Binary search over revisions
m Find the one that introduced a defect

o Undo arbitrary changes
m Without affecting prior or subsequent changes

o Maintain multiple releases of your product



Who uses version control?

Everyone should use version control
e Large teams (100+ developers)
e Small teams (2-10+ developers)

e Yourself (and your future self)
o Multiple features or multiple computers

Example application domains

e Software development

e Experiments (infrastructure and data)
e Documents



Version control for documents Versionisony
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Version control
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Centralized version control (the old way)

e One central repository.
It stores a history of project versions.

e Each user has a working copy.

e A user commits file changes
to the repository.

e Committed changes are immediately
visible to teammates who update.

e Examples: SVN (Subversion), CVS.

Centralized version control
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Distributed version control (the new way)

Distributed version control in git
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unless fetched from another repository.

e Examples: Git, Hg (Mercurial).



2 different version control modes

Centralized version control
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Multiple versions of your program

What if you have to support:
e Version 1.0.4 and version 2.0.0
e Windows and macOS

e Adding a feature

e Fixing a bug

Git has 3 ways to represent multiple histories:

e Branch: Start a parallel history of changes to the code in the
repository

e Clone: Make a copy of the repository to work on code changes

e Fork: Make a copy the repository that will not necessarily be
merged back with original (but can be through a pull request)



Branches

- A branch is a history of program versions

- There is one main development branch (main, master, trunk)
o It should always pass tests and be ready to ship or deploy

a commit represents HEAD is the most
one state of the project recent commit

main

branch U/




Branches

« Other branches are alternate histories

- You can have many branches
o Lightweight - every work item (feature, bug) has its own branch
m Why is this a good practice?
- Branches (histories) can get out of sync

main
branch

feature O O

branch



Merging branches

- Branches can get out of sync
« Merge incorporates changes from one branch into another
- From feature branch: git merge main

« Life goal of a branch is to be merged into main and deleted as
quickly as possible
o Done via a pull request, not via git merge

a merge commit has
more than one parent

main
branch

feature O O

branch



3 ways to resolve a pull request
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3 ways to resolve a pull request
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3 ways to resolve a pull request
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3 ways to resolve a pull request
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3 ways to resolve a pull request
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3 ways to resolve a pull request
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3 ways to resolve a pull request
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3 ways to resolve a pull request
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Merge conflicts



Conflicts

e \When you run git merge, git attempts to retain all the changes
from each branch
e A conflict arises when two users change the same line of a file

master

Merge conflict!

alice/master

e The person doing the merge needs to resolve the conflict by
manual inspection



git's merge tools
Conflicts can make mistakes

e \When you run git merge(git attempts jo retain all the changes

from each branch
e A conflict arises when two users change the same line of a file

master

Merge conflict!

Hello,
dog!

alice/master

e The person doing the merge needs to resolve the conflict by
manual inspection



Merge Algorithm: May Fail to Make a Merge

1 def main():
2 n =128

e Line-by-line merge . print(m
yields a conflict X ntialcode X
P |nspection reveals 1 def main(): 1 def main():
2 n_people = 128 2 n = 64
they can be merged 3 print(n_people) 3 print(n)
Change 1 R\ ’ Change 2
Still works despite R

2 changes ; print(n_people)

Merged (unachievable by
line-based merge)



Merge Algorithm: Falsely Successful Merge

def mult(a,b):
return axb

def main():
a=3
print(a)

x Initial code \

e Line-by-line merge
yields no conflicts
(“clean merge”)
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1 1
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4 a=3 4 a = mult(3,5)
5 print(a) 5 print(a)
Change 1 a x Change 2
1 def multiply(a,b):
2 return axb
Function name > » def main():
4 a = mult(3,5)
changed 5 Srint(a)

Merged (incorrectly)



Rebasing
(= rewriting the commit history)

@ D’On,t. ‘ ‘f“: V
WORLD OF PAIN

Any questions?




How to avoid merge conflicts



Synchronize with teammates often

® Pull often

O Avoid getting behind the main branch

® Push as often as practical

O Don’t destabilize the main build

O Use continuous integration (automatic testing on each push, even for

branches)

O Avoid long-lived branches



Commit often

® On the main branch (or any long-lived branch):

1. Every commit should address one concept (see next
slide)

2. Every concept should be in one commit

3. Tests should always pass

® On feature/bugfix branches:

1. Don’t worry about the commit history
2. From branch back into main: squash and merge



Make single-concern branches and commits

They are easier to understand, review, merge, revert.
Ways to achieve single-concern branches and commits:

® Do only one task at a time

O Commit after each one

® (Create a branch for each simultaneous task

O Easier to share work with teammates | CEEDE
working copy
O Single-concern branch = Single-concern commit on main per branch.

O Requires a bit of bookkeeping to keep track of them all

® Do multiple tasks in one working copy with multiple
branches

O  Commit only specific files, or only specific parts of files (use Git’s
“staging area” with git add; can interactively choose parts of files)



Do not commit all files

Use a .gitignore file

Don’t commit:

e Binary files

e Logfiles

e (Generated files
e Temporary files



Plan ahead to avoid merge conflicts

® Modularize your work
O Divide work so that individuals or subteams “own” parts of the code
O Other team members only need to understand its specification

O Requires good documentation and testing

® Communicate about changes that may conflict

o Examples (rare!): reformat whole codebase, move directories, rename
fundamental data structures



Cloning

« git clone creates a local copy of the repo and a working
copy of the files for editing

- Ideal for contributing to a repo alongside other
developers

e git push sends (GitHub(remote)
local changes to
remote repo

Server
Repository Clone
B £l Ny (copy on local host)
9“\\ a = D(/s
Repository Repository Repository
Working Working Working \J/
copy copy copy

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3



Fo rking (GitHub concept, not a git concept)

- Creates a new, unrelated repository (GitHub project)
that is initially an exact copy

- Changes to either repository do not affect the other

- Allows you to evolve the repo without impacting the
original

- |If original repo is deleted, forked repo will still exist

GitHub Fork
(full independent copy)

Lo T LRI\

- |t’s possible to update the original but only with pull
requests (original owner approves or not)



Typical workflow

git pull
git branch name
git checkout name
Repeat:
<edit files, run tests>
[git add]
glit commit
git pull
<run tests again>
glit push

<make a GitHub pull request>

Local . Remote

remote

working S aglng oca
directory area repo

repo

_h

= git fetch && glt ‘merge




Git’s confusing vocabulary

index: staging area (located .git/index)

content: git tracks what is in a file, not the file itself

tree: git's representation of a file system

working tree: tree representing the local working copy

staged: ready to be committed

commit: a snapshot of the working tree (a database entry)

ref. pointer to a commit object

branch: just a (special) ref; semantically: represents a line of dev
HEAD: a ref pointing to the working tree



Learn more!

e Other resources: explanations, tips, best practices
o Michael Ernst: VC Concepts and Pull Requests

Atlassian merge vs rebase

Git branching and merging

Video tutorial “Git, GitHub, & GitHub Desktop”

Learn Git Branching

© O O O



https://homes.cs.washington.edu/~mernst/advice/version-control.html
https://homes.cs.washington.edu/~mernst/advice/github-pull-request.html
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://www.youtube.com/watch?v=8Dd7KRpKeaE
https://learngitbranching.js.org/

