CSEb584: Software Engineering

Lecture 9 (December 1, 1998)

David Notkin
Dept. of Computer Science & Engineering
University of Washington
www.cs.washington.edu/education/courses/584/CurrentQtr/

This week

+ Type inference (Lackwit)
* Program representations for tool support
+ Inferring invariants

Notkin (c) 1997, 1998 2

Lackwit (O'Callahan & Jackson)

* Code-oriented tool that exploits type
inference

+ Answers queries about C programs
- e.g., "locate all potential assignments to this
field"
- Accounts for aliasing, calls through function
pointers, type casts

- Efficient

- e.g., answers queries about a Linux kernel
(157KLOC) in under 10 minutes on a PC

Notkin (c) 1997, 1998 3

Placement

- Lexical tools are very general, but are often
imprecise because they have no knowledge of
the underlying programming language

+ Syntactic tools have some knowledge of the
language, are harder to implement, but can
give more precise answers

+ Semantic tools have deeper knowledge of the
language, but generally don't scale, don't
work on real languages and are hard to
implement

Notkin (c) 1997, 1998 4

Lackwit
+ Semantic + Sample queries
+ Scalable - Which integer variables contain file
- Real language handles?
Q) - Can pointer f oo in function bar be
. Static passed to free()? If so, what paths

in the call graph are involved?

+ Can work on . A :
i - Field f of variable v has an incorrect

incomplete value; where in the source might it
plislasis have changed?
- Make

assumptions - Which functions modify the cur_venh
about missing field of map_nanager _gl obal ?

code, or supply

stubs Notkin (c) 1997, 1998 5

Lackwit analysis

- Approximate (may return false positives)
- Conservative (may not return false
negatives) under some conditions
- C's type system has holes
- Lackwit makes assumptions similar to those made
by programmers (e.g., "no out-of-bounds memory
accesses")
- Lackwit is unsound only for programs that don't
satisfy these assumptions

Notkin (c) 1997, 1998 6




Query commonalities

+ There are a huge humber of names for

storage locations

- local and global variables; procedure parameters;
for records, etc., the sub-components

Values flow from location to location, which

can be associated with many different names

Archetypal guery: Which other names

identify locations to which a value could flow
to or from a location with this given name?
- Answers can be given textually or graphically

Notkin (c) 1997, 1998 7

An example

* Query about the

cur _veh field of
map_nanager _gl obal
Shaded ovals are
functions extracting
fields from the global
Unshaded ovals pass
pointers to the
structure but don't
manipulate it

+ Edges between ovals - v

are calls

+ Rectangles are globals
+ Edges to rectangles are

" ' 3 1

variable accesses . e g e
Notkin (c) 1997, 1998 8

Claim

* This graph shows which functions would have
to be checked when changing the invariants
of the current vehicle object

- Requires semantics, since many of the
relationships are induced by aliasing over

Underlying technique

Use type inference, allowing type information
to be exploited to reduce information about
values flowing to locations (and thus names)
But what to do in programming languages
without rich type systems?

Notkin (c) 1997, 1998 10

pointers
Notkin (c) 1997, 1998 9
Trivial example
« DollarAmt e int
getSalary(EmployeeNum e) getSalary(int e)

+ Relatively standard
declaration

+ Allows us to determine that
there is no way for the
value of e to flow to the
result of the function
- Because they have different

types

+ Another, perhaps more

common, way to declare the
same function

+ This doesn't allow the

direct inference that e's

value doesn't flow to the

function return

- Because they have the same
type

+ Demands type inference

mechanism for precision

Notkin (c) 1997, 1998 1

Lackwit's type system

* Lackwit ignores

the C type
declarations i
+ Computes new
types in a richer
type system — L

« char* strcpy(char* dest,char* source)

e (nuntreff, numarefyY) ~enumorefh

+ Implies
- Result may be aliased with dest (flow between pointers)
- Values may flow between the characters of the parameters
- No flow between sour ce and dest arguments (no aliasing)

Notkin (c) 1997, 1998 12




Incomplete type information

« void* returnlst(void* x,void* y) {
return x; }
c(arefB, by ~9arefP
+ The type variable a indicates that the type of the
contents of the pointer x is unconstrained

- But it must be the same as the type of the contents of
pointery

+ Increases the set of queries that Lackwit can
answer with precision

Notkin (c) 1997, 1998 13

Type stuff

* Modified form of Hindley-Milner algorithm
W
- Efforts made to handle
- Mutable types
- Recursive types
- Null pointers
- Uninitialized data
- Type casts
- Declaration order

Notkin (c) 1997, 1998 15

Polymorphism

* char* ptri;
struct timeval* ptr2;
char** ptr3;

returnlst(ptrl,ptr2); returnlst(ptr2,ptr3)
+ Both calls match the previous function declaration
+ This is solved (basically) by giving rewmist a
richer type and instantiating it at every call site
—(creff, d) -dcreff
—(erefo, f) -xerefa

[Da. OB. Ob. g arefP, b) ~varef?|

Notkin (c) 1997, 1998 14

e *froml is not
compatible with
either *from2
or *to2

- Butitiswith
copy: *from
copy: *to,
copy5: *from +
copy5: *to

Notkin (c) 1997, 1998 16

Morphin case study

* Robot control program of about 17KLOC
+ Vehicle object contains two queue objects

- Client was investigating combining these two
queues into one

* Queried each queue object to discover

operations performed and their contexts

The two graphs each contained 171 nodes

- But each graph had only five nodes highlighted as
"accessor” nodes

Notkin (c) 1997, 1998 17

Example

+ These five matches helped identify code to
be changed

- grep would have returned false matches and
missed matches when parameters were
passed to functions

+ Context-sensitivity needed to distinguish the
two queue onjects

- Because both are passed as arguments to the
same queue functions

Notkin (c) 1997, 1998 18




Recap

* Helps find relationships among variables in a

C program

- Exploits type inference to understand values
flowing to locations and thus names

* Approximate, although safe under many

(most?) conditions

- Reasonably efficient

- Although I didn't show the numbers, they are
now better than reported in the ICSE paper

Notkin (c) 1997, 1998 19

Slicing, dicing, chopping

* Program slicing is an approach to selecting

semantically related statements from a
program [Weiser]

* In particular, a slice of a program with

respect to a program point is a projection of
the program that includes only the parts of
the program that might affect the values of
the variables used at that point

- The slice consists of a set of statements that

are usually not contiguous
Notkin (c) 1997, 1998 20

Basic ideas

+ If you need to perform a software
engineering task, selecting a slice will reduce
the size of the code base that you need to
consider

- Debugging was the first task considered

- Weiser even performed some basic user studies
+ Claims have been made about how slicing
might aid program understanding,
maintenance, testing, differencing,
specialization, reuse and merging

Notkin (c) 1997, 1998 21

Example

read(n) read(n)

iNEISIEIE i =1

sum:= 0;

product := 1; product := 1;

while i <= n do begin while i <= n do begin
sum:= sum+ i;
product := product * i; product := product * i;
=i o+ 1 =i+ 1

end; end;

write(sum;

write(product); write(product);

This example (and other material) due in part to Frank Tip

Notkin (c) 1997, 1998 22

Weiser's approach

- For Weiser, a slice was a reduced,

executable program obtained by removing

statements from a program

- The new program had to share parts of the
behavior of the original

- Weiser computed slices using a dataflow

algorithm, given a program point (criterion)

- Using data flow and control dependences,
iteratively add sets of relevant statements until
a fixpoint is reached

Notkin (c) 1997, 1998 23

Ottenstein & Ottenstein

+ Build a program dependence graph (PDG)

representing a program

+ Select node(s) that identify the slicing

criterion

+ The slice for that criterion is the reachable

nodes in the PDG

Notkin (c) 1997, 1998 24




PDG for the example

+ Thick lines are control dependences
+ Thin lines are (data) flow dependences

Notkin (c) 1997, 1998 25

The next slide...

+ ..shows a fuzzy version of the SDG for a
version of the product/sum program
- Procedures Add and Mul ti pl y are defined

- They are invoked to compute the sum the
product and to increment i in the loop

* This size issue is one of the ones that
Griswold has addressed in a couple of ways

Notkin (c) 1997, 1998 27

Context

+ A big issue in interprocedural slicing is
whether context is considered

+ In Weiser's algorithm, every call to a
procedure could be considered as returning
to any call site
- This may significantly increase the size of a slice

Notkin (c) 1997, 1998 29

Procedures

* What happens when you have procedures and

still want to slice?

+ Weiser extended his dataflow algorithm to

interprocedural slicing

+ The PDG approach also extends to

procedures

- But interprocedural PDGs are a bit hairy
(Horwitz, Reps, Binkley used SDGs)

- Representing conventional parameter passing is
not straightforward

Notkin (c) 1997, 1998 26

o " - 1 -
T - [ T
o — T L —
e A
i e
F | C  —
1 A e
g =
Zvacr ":....I—_ = '_.
e T -
e
k. = T - - i
o e e

Notkin (c) 1997, 1998 28

Reps et al.

* Reps and colleagues have a number of results

for handling contextual information for
slices

+ These algorithms generally work to respect

the call-return structure of the original

program

- This information is usually captured as summary
edges for call nodes

Notkin (c) 1997, 1998 30




Technical issues

- How to slice in the face of unstructured
control flow?

* Must slices be executable?
+ What about slicing in the face of pointers?

* What about those pesky preprocessor
statements?

Notkin (c) 1997, 1998 31

Dynamic slicing

* These algorithms have all been static

- They work for all possible inputs

* There is also work in dynamic slicing, trying

to find slices that satisfy some execution
streams over sets of inputs

- Korel and Laski characterize dynamic slices in
terms of a trajectory that captures the
execution history of a program in terms of a
sequence of statements and control predicates

Notkin (c) 1997, 1998 32

(Potential) applications

+ Debugging

* Program differencing

- Semantic versions of diff

* Program integration

- Merging versions together

* Testing

- Slicing can be used to define more rigorous

testing criterion than a conventional data flow
testing criterion

Notkin (c) 1997, 1998 33

Recap

+ Cool idea

- Dicing and chopping are beyond the scope of this
lecture

- Difficult on practical programs

- May be coming closer to feasible after almost 20
years of research

+ Little data on the size of slices
« Will it be more than a cool idea?

- My guess? No (but I wouldn't bet the farm on it)

Notkin (c) 1997, 1998 34

Invariants

* Invariants play a central role in program

development

- Refining a specification into a correct program

- Static verification of limited (but important)
invariants such as type declarations

- Run-time checking of invariants represented as
assert statements

* A number of researchers firmly believe that

the lack of stated invariants in programs is

the root of almost all evil

Notkin (c) 1997, 1998 35

Where are they?

« Invariants are few and far between in most

code

- In Gnu Emacs, 33 out of 114KLOC lines match a
grep on "assert" (some of them are actually
asserts)

+ Thisisn't fully fair, since comments may also
represent asserts (and perhaps other program
statements, too)

+ Invariants, like comments, are probably

omitted in part because of the opportunity
cost

Notkin (c) 1997, 1998 36




In any case, they aren't
there

Notkin (c) 1997, 1998 37

Our approach: dynamically
infer them

(Well, at least some of them)
Execute a program on a collection of inputs

Extract the values that variables take on
during these executions

Infer invariants at program points based on
these values

Notkin (c) 1997, 1998 38

Complement to static

This approach (if it works) is, like all dynamic

techniques

- unable to produce sound information about all
program executions

- heavily dependent on the actual inputs selected

Static techniques are always intellectually

more attractive

- But they are often difficult and often imprecise
in practice

The approaches surely complement each

other

Notkin (c) 1997, 1998 39

Ex: a basic Gries program

15.1.1::: BEG N 100 sanpl es

And the loop invariants

15.1.1:::LOCP 1107 sanpl es

N = size(B)
S = sum(B[0..1-1])
Nin [7..13] (7 val ues)
B (100 val ues)
Al elerments in [-100..100] (200 val ues)
I in [0..13] (14 val ues)
sum(B) in [-556..539] (96 val ues)
B[ 0] nonzero in [-99..96] (79 val ues)
B[-1] in [-88..99] (80 val ues)
B[O..1-1] (985 val ues)
Al elenments in [-100..100] (200 val ues)
I <= N (77 val ues)
Negative invariants:
N != B[-1] (99 val ues)
B[O] != B[-1] (100 val ues)

Notkin (c) 1997, 1998 41

fjs '._,_90’ N = size(B)
or=n - ) Nin[7..13] (7 val ues)
is:=iH+1s+bfil | g (100 val ues)
od Al elenents >= -100 (200 val ues)
15.1.1::: END 100 sanpl es
N =1 = Norig = size(B)
B =Borig
S = sumB)
Nin [7..13] (7 val ues)
B (100 val ues)
Al elenents >= -100 (200 val ues)
Notkin (c) 1997, 1998 40
\f
Input Suite
\_//\
Original Instrumented
2 Program Instrumenter Program
\/\ \_/A
Ty
Inferred —_—
Inference [——
Invariants Engine Value
\/\ Database
L] paebase
Notkin (c) 1997, 1998 42




Instrumentation

+ A mere matter of programming

- Not!

- Ask Jakel

* The C/C++ instrumenter is semi-automatic as
now

- Built using the EDG framework

Notkin (c) 1997, 1998 43

Captured data

+ The instrumenter ensures that for each

instrumented program point the values of all
selected variables are written out

- Locals, globals, parameters, return values can be
selected

* Question: should variables with unchanged

values be written out each time they are
encountered?
- Changes the number of samples and confidence in

inferred invariants
Notkin (c) 1997, 1998 44

User control

* The user should be able to select

- the program points to instrument and

- the variables to instrument at those points

* This is important for two reasons

- To manage the performance of the inference
engine

- To allow the user to focus on the parts of the
program that are of interest for the given task

Notkin (c) 1997, 1998 45

Invariants

+ Given the value database, the engine checks

for a variety of invariants

* The list of invariants was developed by

hypothesizing some basic invariants, studying
the Gries programs to find generally useful
invariants

- Undoubtedly, this list will evolve

Notkin (c) 1997, 1998 46

Invariants

+ For any variable, determine if it is a constant

or takes on a small number of values

* For any numeric variable, determine if it is in

a given range

- Or is (or is not) equal to a mod b (where a and b
are constants)

+ For multiple numeric variables, look for linear

relationships, standard library function

relationships, comparisons, etc.

Notkin (c) 1997, 1998 47

Sequence invariants

- For a given sequence, determine if all its

elements satisfy some invariant (for
instance, are all less than some constant)

+ For multiple sequences, check for

subsequence and lexicographic relationships

* For a sequence and a scalar variable, check

for membership

Notkin (c) 1997, 1998 48




Checking

- As each new value for a variable is read,
check each possible invariant

- Stop checking if an invariant fails to hold

* The listed invariants are cheap to check
- But there are a lot of them!

Notkin (c) 1997, 1998 49

Statistics

- Statistical analysis is used to decide if

properties are likely to be invariants as
opposed to coincidental properties

- Negative invariants: relationships that might be
expected to occur but were never observed in
the input

- Inferring ends of ranges

Notkin (c) 1997, 1998 50

Negative invariant example

* Reported values for variable x fall into a

range of size r that includes O

+ For a given value of x, the probability it is

not 0 is 1- 1/ r (assuming uniform

distribution)

* With v values, the probability x is never 0 is
(1-1/r)V

* If this is less than a user-defined

confidence level, then the invariant x#0 is

reported

Notkin (c) 1997, 1998 51

Gries program, new input

15.1.1:::LOOP 986 sanpl es

N = size(B)
S = sum(B[0..1-1])
B 96 val ues)

Al elenments in [-6005..7680] 784 val ues)

(
(
Nin [0..35] (24 val ues)
| >=0 (36 val ues)
sum(B) in [-15006..21144] (95 val ues)
B[O..1-1] (887 val ues)
Al elenments in [-6005..7680] (784 val ues)
I <= N (363 val ues)

Notkin (c) 1997, 1998 52

Derived variables

+ To reduce the complexity of computing

invariants, derived variables (actually, values)

are used

+ A derived variable might represent, for
instance, the length of an array

* This allows a broader variety of invariants to
be found without modifying the engine
deeply each time

Notkin (c) 1997, 1998 53

Scenario

+ Take a small sized C program (about 500

lines) and modify it to explore the use of
dynamically computed invariants

+ The program and thousands of test cases

existed beforehand

- It does regular expression matching, but

didn't provide the + operator

Notkin (c) 1997, 1998 54




Informal walkthrough...

- ..of the change and the use of the invariants

Notkin (c) 1997, 1998 55

Discussion

- Mixed static analysis with the use of

dynamic invariants

* Invariants provided a suitable basis for the

programmer’s own, more complex inferences

- Since the invariants are in terms of source code
entities, the programmer could do other analysis
to better understand these issues

+ Invariants acted as a succinct abstraction of

a mass of supporting data

Notkin (c) 1997, 1998 56

Question

+ Does anyone know of any product or
approach in which information from test
suite executions is stored and later queried?

Notkin (c) 1997, 1998 57

Scalability

* When this idea was first proposed, I thought

that the biggest issue and problem would be
performance

* Now that seems to be less of a problem

(although still material)
- Better performance of the engine that I
expected (although memory is still a big issue)
- Focused instrumentation and limited variable
choice is the ultimate way to reduce costs
+ But will it hurt the utility of the approach?

Notkin (c) 1997, 1998 58

Possible uses

- Easing evolution
* Test case coverage

* Program understanding (especially with value
database queries)

- Use to form a program spectrum

* Use to help insert assert statements in
programs
* To aid compiler optimizations

Notkin (c) 1997, 1998 59

Other uses?

* And general comments?

Notkin (c) 1997, 1998 60

10



Recap

+ Invariants are "good" but infrequently
written down by programmers

- Instead, use execution information to infer
(likely) program invariants

+ But will this approach
- Scale?

- Actually help with any software engineering
tasks?

Notkin (c) 1997, 1998 61

Tools

+ Static vs. dynamic

- Complementary

+ Finding bugs vs. improving performance
* Program representations

- Affect precision and performance

+ Partial specifications

- You get some benefit for small cost

* Inference to reduce programmer effort

- Type, dynamic

Notkin (c) 1997, 1998 62

Next (and final) week

+ Testing and quality assurance issues

Notkin (c) 1997, 1998 63

11



