Aligning a Description

- Designated terms and phenomena are like triangulation points on the map and on the ground
Problem Structures

- Problems are usually structured as subproblems that are:
 - heterogeneous
 - related by superimposition
 - pinned together at shared phenomena
- The appropriate metaphor is …
 - … not assemblies and sub-assemblies
 - … but CYMK separations in colour printing
Requirements, Specifications, Programs

- A specification is also a requirement
- A specification is also a program
Three Topics and a Button

- 4 Facets of the Relationship
 - The Machine as a *model* of the World
 - The interface of *shared phenomena*
 - *Engineering* the World and the Machine
 - Problem and solution *structures*

- 4 Kinds of Denial of the World
- 4 Principles for Accepting the World
Properties of the World

- on_runway
- wheels_turning
- can_reverse
- wheel_pulses

Requirement
Property of the World (?)
Specification
The Machine, the Model, and the World

- *Formal Methods* concern the left arrow
- We have no theory for the right arrow

Brian Cantwell Smith; *The Limits of Correctness*
The Package Router

Incoming Packages

Reading Station

Sensors at Top and Bottom of each Pipe

Two-position Switch at each node

Bins
The Royal Albert Bridge, Saltash

I K Brunel, Engineer, 1849
The World and Us (2)

“I accept the universe”
 — Margaret Fuller

“By Gad! she’d better!”
 — Thomas Carlyle
The World and Us (1)

“The world is too much with us ...”
— William Wordsworth
Indicative and Optative

- Natural language distinctions are impractical:
 - “I shall drown, no-one will save me!”
 - “I will drown, no-one shall save me!”
- Mood of a sentence in development changes with its context:
 - In handling the *Revision History* requirement, the *Editing* requirement should be treated as satisfied — not optative but indicative
- So indicative and optative sentences should be kept apart in separate descriptions
Montaigne’s Principle

“The greater part of this world’s troubles are due to questions of grammar.”

• Demanded for some Government contracts:

 “Absolute tense ‘shall’: a binding, measurable requirement ….
 “Future tense ‘will’: a reference to the future, … not under control of the system being specified.
 “Present tense: for all other verbs ….”

• The distinction is not of tenses, but of moods
 • Optative: desired in the World
 • Indicative: true regardless of the Machine
Shanley and Many Descriptions

- One description is not enough

Editing Requirement:
Operation O requested on text T

Revision History Requirement
Operation O requested on text T by user U

GUI Requirements
Operation O requested by clicking button B
The Shanley Principle

“In civil engineering design it is presently a mandatory concept known as the Shanley Design Criterion to collect several functions into one part.”

Pierre Arnoul de Marneffe, cited by D Knuth, 1974

- 1940-1945 rockets had separate components for fuel tank, outer skin, body frame
- Saturn-B had a tubular body that was at once its fuel tank, outer skin, and body frame
- It may (or may not) be good to engineer Machines in this way, but the World is certainly like this!
- No class hierarchy, no strong typing!
Reducing Domain Concepts

- The rebuilt defined terms are not the original informal terms
- Definition is not designation
The Principle of Reductionism

- In any informal world many terms — often nouns in English — are obviously important …
 - in telephony: *calls*
 - in a meeting-scheduling system: *meetings*
 - in an airline system: *flights*
- … but difficult or even impossible to designate
- They must be reduced to elementary designated phenomena — often *events*
Modelling and Shared Phenomena

- *Sharing phenomena* and *modelling* are different relationships between the Machine and the World
 - Shared phenomena → modelling
 - Any description that is true of the shared phenomena is a shared descriptions
- But …
- … → (modelling → shared phenomena)
- The database shares no phenomena with the reality it models
von Neumann’s Principle

“There is no point in using exact methods where there is no clarity in the concepts and issues to which they are to be applied.”

von Neumann & Morganstern: Theory of Games

- Designations
 - Mother\((x,y)\) ≈ ‘\(x\) is the genetic mother of \(y\)’
 - Formal term ≈ recognition rule
 - Anticipate interventions of the form:
 “It all depends on what you mean by *mother*”
Talking About the World: 4 Principles

von Neumann’s principle

• Knowing what you’re talking about

The principle of reductionism

• Finding the solid ground

The Shanley principle

• Recognising versatility

Montaigne’s principle

• Minding your language
The System and the Real World

“... the Z approach is to construct a specification document which consists of a judicious mix of informal prose with precise mathematical statements. ... the informal text can be consulted to find out what aspects of the real world are being described.... The formal text in the other hand provides the precise definition of the system and hence can be used to resolve any ambiguities present in the informal text.”

- Machine = system? World = real world?
- Which is being described?
Denial by Vagueness

- Central technique:
 - Describe the Machine, but imply that you’re describing the World

- Prerequisite:
 - Avoid saying explicitly what is being described

- Facilitators:
 - The modelling relationship (the same description is true of both)
 - The shared phenomena at the interface (two sides of the same penny, isn’t it?)
Looking at the Problem Context

- Which is the World? Which is the Machine?
- Which do you describe at the next level of DFDs?
Doing Justice to the Problem

“One tribe always tells the truth and the other always lies. A traveller meets two men, and asks the first: ‘Are you a truth teller?’. The reply is ‘Goom’. The second says: ‘He said Yes, but he is lying’.

Martin Gardner, 2nd Book of Puzzles

- Abstract answer:
 “The reply must always be Yes; so the second man is a truth-teller, and the first is a liar”

- *Lucy Jonelis’* answer:
 “The first man clearly can’t speak English: ‘Goom’ must mean ‘What?’ or ‘Welcome to our land’. So the second man is a liar, and the first is a truth-teller.”
Denial by Abstraction

“We come now to the decisive step of mathematical abstraction: we forget what the symbols stand for.”

Hermann Weyl, quoted by Abelson & Sussman

- Abstraction is a valuable intellectual tool …
- … but it must not be a rule of life for software developers
- Too much abstraction blinds you to the nature of many problems
Denial by Hacking

- Computers are beautiful and fascinating

 “... Miss Byron, young as she was, understood its working and saw the great beauty of the invention.”

 Mrs De Morgan, on Ada’s visit to Babbage, 1828

- Applications are often much less interesting

 “I came into this job to work with computers, not to be an amateur stockbroker.”

 Member of failed development team, 1993

- The Machine is the developers’ own creation; the World is not
Denial by Prior Knowledge

- Legitimate only in applications that are both *specialised* and *standardised*
- Both bridge-design and automobile design are *specialised*
- But only automobile design is *standardised* (human beings, roads and baggage don’t vary much)
- Bridge design is not *standardised* (each location has unique characteristics)
Denial by Prior Knowledge

“We don’t need a requirements capture phase. The problem is already well-defined; our task is merely to solve it.”

• Automobile designers don’t have a requirements capture phase …
 • The car shall be able to travel over snowdrifts and under water
 • The car shall be able to lift a load of 5 tons
 • The car shall accommodate 10 passengers each of weight up to 500 pounds
• … it would be called ‘Rethinking the Motor-car’
Two Requirements Sharing Phenomena

- Editing
- Edit∩Histy
- Revision Histy

- insert
- find_word
- document
- open_to_update
- save_document
- user
- log_on
- delete_document
A Simple Editing Tool

• Three requirements:
 • *Editing* allows users to create and edit texts
 • *GUI* provides convenient and efficient operation
 • *Revision History* provides progress reporting by users and texts

• The requirements are related by conjunction:
 • *Editing* \& *GUI* \& *Revision History*

• The requirements *share phenomena*
The Problem Facet of the Relationship

- Solution structure should reflect problem structure
 - There’s less need for invention
 - It’s easier to validate the solution
- Traditional solution structures are often *hierarchical* and *homogeneous* …
 - Procedure hierarchies, class hierarchies, layered abstract machines, process/dataflow structures
- … but the World rarely exhibits such structures
A Little Engineering Example

- **R**: on_runway \leftrightarrow can_reverse
- **D1**: wheel_pulses \leftrightarrow wheels_turning
 - **D2**: wheels_turning \leftrightarrow on_runway
- **S**: can_reverse \leftrightarrow wheel_pulses
- We have: S, D1, D2 \vdash R — is it enough?
• Programs can satisfy specifications only by virtue of *properties of the machine* (p/l semantics)

• Specifications can satisfy requirements only by virtue of *properties of the world*

• The engineering is in determining, describing and exploiting the properties of the world
Engineering: Requirements, Specifications, and Programs

• The purpose of the Machine is to change the World: this is the requirement

• The required changes are expressible entirely in terms of phenomena of the World …

• … but not usually entirely in terms of phenomena shared with the Machine

• The final engineering product:
 • Machine behaving according to the program …
 • … thus satisfying the specification and …
 • … thus ensuring achievement of the requirement
The shared phenomena are in the (small) intersection between two sets of phenomena:

- PW Phenomena of the World
- PM Phenomena of the Machine

PW ∩ PM Shared Phenomena
Shared Phenomena

- Shared phenomena:
 - Levers
 - FlipUp events
 - FlipDown events

- Private phenomena:
 - Links
 - LinkedBy

 (x:Lever, y:Link)

 - Contacts
 - LocatedOn

 (x:Contact, y:Switch)

- Switches
- TurnOff events
- TurnOn events
The Machine – World Interface

- Shared phenomena: events, other shared individuals, facts visible in both domains

- No communication without sharing:

 ![Diagram]

 is ‘really’ ...

 ![Diagram]

 shared event ‘post letter’

 shared event ‘deliver letter’
Non-Modelling and Ø

- Both the World and the Machine have properties that are private and not shared

- Record Deletion
- Normalisation
- Record Sequencing
- Null Field Values

- Multiple Authors
- Anonymous Works
- Multiple Pseudonyms
- Linked Novels
Modelling and \(\bigcirc \bigcirc \)

- A data model fragment:

- Three sets of descriptions:
The Machine As a Model of the World

Authors, Novels, PublishedBy

A(x) = 'x is an Author'
N(x) = 'x is a Novel'
P(x,y) = 'x is PublishedBy y'

A-Records, N-Records, PointsTo

A(x) = x is A-record
N(x) = x is N-Record
P(x,y) = 'x PointsTo y'

∀x : N(x) • ∃! y : A(y) • P(x,y)
Modelling a Reality

- ‘An SADT system *description* is called a “model” …’
- R L Ackoff (*Scientific Method*, 1962):
 - *Iconic* models — pictures, 3-D representations, eg a child’s model farm
 - *Analytic* models — manipulable formal descriptions, eg differential equations forming an economic model
 - *Analogic* models — an analogous reality, eg an electrical network modelling the flow of water in pipes
- Software models are analogic: eg, a database, an assemblage of objects, a process network
4 Facets of the Relationship

• Modelling:
 the Machine as a *model* of the World

• Interface:
 what the Machine *shares* with the World

• Engineering:
 how the Machine *changes* the World

• Problem:
 the *structure* the Machine must have to
 fit the problem in the World
4 Kinds of Denial

- How we may deny our involvement
 - Denial by Prior Knowledge
 - Denial by Hacking
 - Denial by Abstraction
 - Denial by Vagueness
Three Topics and a Button

- 4 Facets of the Relationship
- 4 Kinds of Denial of the World
- 4 Principles for Accepting the World
- a Button:
Talking about the World and the Machine

- To develop software we must talk both about the World and about the Machine.
- But it’s hard to maintain the right balance between these two universes of discourse.
 - The relationship between them is varied and often subtle.
 - Often we have personal preferences to exploit or resist.
WHAT and HOW

• WHAT does an automobile do?

• It carries *people* and their *baggage*, travelling over *roads* where its *driver* directs it to go

• WHAT is in the *world*, HOW is in the *machine*
Ways of Looking at Software

- ‘Programming should be literate’
- ‘... they regarded my programs as logical poems ...’
- ‘The goal of any system is organisational change’
- ‘Software development is engineering’
 - Because we make machines to serve useful purposes in the world
 - The problem is in the World
 - The Machine is the solution
The World

and

The Machine

Michael Jackson

MAJ Consulting Ltd and AT&T Bell Laboratories
ICSE-17 Seattle 28th April 1995