
Model Checking 

Lecture 1 



Outline 

1  Specifications: logic vs. automata, linear vs. 
branching, safety vs. liveness 

2  Graph algorithms for model checking 

3 Symbolic algorithms for model checking  

4 Pushdown systems 



Model checking, narrowly interpreted: 

Decision procedures for checking if   
a given Kripke structure is a model 
for a given formula of a modal logic. 



Why is this of interest to us? 

Because the dynamics of a discrete system can 
be captured by a Kripke structure.  

Because some dynamic properties of a discrete 
system can be stated in modal logics.  

 

Model checking = System verification 



Model checking, generously interpreted: 

Algorithms, rather than proof calculi, 
for system verification which operate on 
a system model (semantics), rather than 
a system description (syntax). 



There are many different model-checking problems: 

 for different (classes of) system models 

 for different (classes of) system properties 



A specific model-checking problem is defined by  

I   |=   S 

“implementation” 
(system model) 

“specification” 
(system property) 

“satisfies”, “implements”, “refines” 
(satisfaction relation) 



A specific model-checking problem is defined by  

I   |=   S 

“implementation” 
(system model) 

“specification” 
(system property) 

“satisfies”, “implements”, “refines” 
(satisfaction relation) 

more detailed more abstract 



Characteristics of system models which favor model 
checking over other verification techniques: 

ongoing input/output behavior                       
(not: single input, single result) 

concurrency             
(not: single control flow) 

control intensive                     
(not: lots of data manipulation) 



Examples 

-control logic of hardware designs 

-communication protocols 

-device drivers  



Paradigmatic example: 

mutual-exclusion protocol 

loop 

   out:  x1 := 1; last := 1 

   req:  await  x2 = 0  or  last = 2 

   in:     x1 := 0 

end loop. 

loop 

   out:  x2 := 1; last := 2 

   req:  await  x1 = 0  or  last = 1 

   in:     x2 := 0 

end loop. 

|| 

P1 P2 



Model-checking problem 

I   |=   S 

system model system property 

satisfaction relation 



Model-checking problem 

I   |=   S 

system model system property 

satisfaction relation 



Important decisions when choosing a system model  

-state-based vs. event-based 

-interleaving vs. true concurrency 

-synchronous vs. asynchronous interaction 

-etc. 



Particular combinations of choices yield 

CSP  

Petri nets 

I/O automata 

Reactive modules 

etc. 



While the choice of system model is important for 
ease of modeling in a given situation, 

the only thing that is important for model checking 
is that the system model can be translated into 
some form of state-transition graph. 



a 

a,b b 

q1 

q3 q2 



State-transition graph 

Q          set of states   {q1,q2,q3} 

A    set of atomic observations {a,b} 

  Q  Q     transition relation           q1  q2 

[ ]: Q  2A   observation function        [q1] = {a} 

 

set of observations 



Mutual-exclusion protocol 

loop 

   out:  x1 := 1; last := 1 

   req:  await  x2 = 0  or  last = 2 

   in:     x1 := 0 

end loop. 

loop 

   out:  x2 := 1; last := 2 

   req:  await  x1 = 0  or  last = 1 

   in:     x2 := 0 

end loop. 

|| 

P1 P2 



oo001 

rr112 

ro101 or012 

ir112 

io101 

pc1: {o,r,i} 
pc2: {o,r,i} 
x1: {0,1} 
x2: {0,1} 
last: {1,2} 

33222 = 72 states 



The translation from a system description 
to a state-transition graph usually involves 
an exponential blow-up !!! 

e.g.,  n boolean variables    2n states 

This is called the “state-explosion problem.” 



Finite state-transition graphs don’t handle: 
- recursion (need pushdown models) 

- process creation  

We will talk about some of these issues in a later 
lecture. 

State-transition graphs are not necessarily finite-state 



Model-checking problem 

I   |=   S 

system model system property 

satisfaction relation 



Three important decisions when choosing system properties: 

1 automata vs. logic 

2 branching vs. linear time  

3 safety vs. liveness 
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Three important decisions when choosing system properties: 

1 automata vs. logic 

2 branching vs. linear time  

3 safety vs. liveness 

The three decisions are orthogonal, and they lead to 
substantially different model-checking problems.  



Safety vs. liveness 

Safety:    something “bad” will never happen 

Liveness:  something “good” will happen   
        (but we don’t know when) 



Safety vs. liveness for sequential programs 

Safety:    the program will never produce a         
       wrong result (“partial correctness”) 

Liveness:  the program will produce a result     
       (“termination”) 



Safety vs. liveness for sequential programs 

Safety:    the program will never produce a         
       wrong result (“partial correctness”) 

Liveness:  the program will produce a result     
       (“termination”) 



Safety vs. liveness for state-transition graphs 

Safety:   those properties whose violation always 
       has a finite witness   
       (“if something bad happens on an infinite 
run,   then it happens already on some finite 
prefix”) 

Liveness:  those properties whose violation never  
       has a finite witness                          
(“no matter what happens along a finite run, 
something good could still happen later”) 



a 

a,b b 

q1 

q3 q2 

Run:      q1  q3  q1  q3  q1  q2  q2  

Trace:   a    b    a   b    a   a,b  a,b  

 



State-transition graph  S = ( Q, A, , [] ) 

Finite runs:  finRuns(S)  Q* 

Infinite runs:         infRuns(S)  Q 

 

Finite traces: finTraces(S)  (2A)* 

Infinite traces:      infTraces(S)  (2A) 

 



Safety:   the properties that can be    
      checked on finRuns 

Liveness:   the properties that cannot be 
        checked on finRuns 



Safety:   the properties that can be    
      checked on finRuns 

Liveness:   the properties that cannot be 
        checked on finRuns 

                 (they need to be checked on   
        infRuns) 

This is much easier. 



Example:  Mutual exclusion 

It cannot happen that both processes are in 
their critical sections simultaneously. 



Example:  Mutual exclusion 

It cannot happen that both processes are in 
their critical sections simultaneously. 

Safety 



Example:  Bounded overtaking 

Whenever process P1 wants to enter the critical 
section, then process P2 gets to enter at most 
once before process P1 gets to enter. 



Example:  Bounded overtaking 

Whenever process P1 wants to enter the critical 
section, then process P2 gets to enter at most 
once before process P1 gets to enter. 

Safety 



Example:  Starvation freedom 

Whenever process P1 wants to enter the critical 
section, provided process P2 never stays in the 
critical section forever, P1 gets to enter eventually. 



Example:  Starvation freedom 

Whenever process P1 wants to enter the critical 
section, provided process P2 never stays in the 
critical section forever, P1 gets to enter eventually. 

Liveness 



a 

a,b b 

q1 

q3 q2 

infRuns       finRuns 



a 

a,b b 

q1 

q3 q2 

infRuns       finRuns 

*    
closure     

*finite branching 



For state-transition graphs,             
all properties are safety properties ! 



Example:  Starvation freedom 

Whenever process P1 wants to enter the critical 
section, provided process P2 never stays in the 
critical section forever, P1 gets to enter eventually. 

Liveness 



a 

a,b b 

q1 

q3 q2 

Fairness constraint: 

the green transition cannot be ignored forever 



a 

a,b b 

q1 

q3 q2 

Without fairness:   infRuns = q1 (q3 q1)* q2
  (q1 q3) 

With fairness:        infRuns = q1 (q3 q1)* q2
 

 



Two important types of fairness 

 1   Weak (Buchi) fairness:    
 a specified set of transitions cannot be 
 enabled forever without being taken  

 2  Strong (Streett) fairness:   
 a specified set of transitions cannot be 
 enabled infinitely often without being taken  



a 

a,b b 

q1 

q3 q2 

Strong fairness 



a 

a,b 

q1 

q2 

Weak fairness 



Fair state-transition graph  S = ( Q, A, , [], WF, SF) 

WF     set of weakly fair actions 

SF       set of strongly fair actions 

 

where each action is a subset of   



Weak fairness comes from modeling concurrency 

loop x:=0 end loop. loop x:=1 end loop. || 

x=0 x=1 

Weakly fair action                  
Weakly fair action 



Strong fairness comes from modeling choice 

Strongly fair action                  
Strongly fair action 

loop    m:     
 n:    x:=0 | x:=1    
end loop. 

pc=n 
x=0 

pc=n 
x=1 

pc=m 
x=0 

pc=m 
x=1 



Weak fairness is sufficient for 
asynchronous models       
(“no process waits forever if it can move”).  

 

Strong fairness is necessary for modeling 
resource contention. 

Strong fairness makes model checking 
more difficult.  



Fairness changes only infRuns, not finRuns. 

 

Fairness can be ignored for checking safety properties. 



The vast majority of properties to be 
verified are safety. 

While nobody will ever observe the violation 
of a true liveness property, fairness is a 
useful abstraction that turns complicated 
safety into simple liveness. 

Two remarks 



Three important decisions when choosing system properties: 

1 automata vs. logic 

2 branching vs. linear time  

3 safety vs. liveness 

The three decisions are orthogonal, and they lead to 
substantially different model-checking problems.  



Fair state-transition graph  S = ( Q, A, , [], WF, SF ) 

Finite runs:  finRuns(S)  Q* 

Infinite runs:         infRuns(S)  Q 

 

Finite traces: finTraces(S)  (2A)* 

Infinite traces:      infTraces(S)  (2A) 

 



Linear time:   the properties that can be    
             checked on infTraces 

Branching time:   the properties that cannot  
                   be checked on infTraces 

Branching vs. linear time 



a 

x x x 

a 

b b c c 

Same traces         {axb, axc}                             
Different runs     {q0 q1 q3, q0 q2 q4},  {q0 q1 q3, q0 q1 q4} 

q0 
q0 

q2 q1 q1 

q4 q4 q3 q3 



a 

x x x 

a 

b b c c 

q0 
q0 

q2 q1 q1 

q4 q4 q3 q3 

Linear-time: 
In all traces, an x must happen immediately followed by b 



a 

x x x 

a 

b b c c 

q0 
q0 

q2 q1 q1 

q4 q4 q3 q3 

Linear-time: 
In all traces, an x must happen immediately followed by b or c 



a 

x x x 

a 

b b c c 

q0 
q0 

q2 q1 q1 

q4 q4 q3 q3 

Branching-time: 
An x must happen immediately following which  
a b may happen and a c may happen 



a 

a a a 

a 

b b c c 

Same traces, different runs (different trace trees) 



Three important decisions when choosing system properties: 

1 automata vs. logic 

2 branching vs. linear time  

3 safety vs. liveness 

The three decisions are orthogonal, and they lead to 
substantially different model-checking problems.  



   Linear   Branching 

Safety                       STL 

Liveness  LTL            CTL 

Logics 



STL (Safe Temporal Logic) 

- safety (only finite runs) 

- branching 



Defining a logic 

1. Syntax:   

          What are the formulas? 

2.  Semantics: 

          What are the models? 

          Does model M satisfy formula  ? M |=  



Propositional logics: 

    1.  boolean variables (a,b)  &  boolean operators  (,) 

    2.  model = truth-value assignment for variables 

 

Propositional modal (e.g., temporal) logics:  

    1.   ...  &  modal operators (,) 

    2.  model = set of (e.g., temporally) related prop. models 



Propositional logics: 

    1.  boolean variables (a,b)  &  boolean operators  (,) 

    2.  model = truth-value assignment for variables 

 

Propositional modal (e.g., temporal) logics:  

    1.   ...  &  modal operators (,) 

    2.  model = set of (e.g., temporally) related prop. models 

observations 

state-transition graph (“Kripke structure”) 

atomic observations 



STL Syntax 

   ::=   a  |      |     |     |   U  

boolean variable 
(atomic observation) 

boolean operators 

modal operators 



STL Model 

( K, q ) 

state-transition graph 
(Kripke structure)  

state of K 



STL Semantics 

(K,q)  |=  a  iff    a  [q] 

(K,q)  |=            iff    (K,q) |=   and  (K,q) |=  

(K,q)  |=              iff    not  (K,q) |=  

(K,q)  |=            iff    exists  q’  s.t.      
           q  q’  and  (K,q’) |=  

(K,q)  |=   U   iff    exists q = q0  q1  ...  qn.                               
                      1.  for all 0  i < n,  (K,qi) |=  
                               2.  (K,qn) |=  



          EX         exists next 

   =          AX         forall next 

U          EU exists until 

   =  true U         EF exists eventually 

   =            AG forall always 

 

W  =   ( () U (  ))  

            AW         forall waiting-for
               (forall weak-until) 

Defined modalities 



Exercise 

1.  Derive the semantics of W : 

(K,q) |= W  iff  for all q0, q1, q2, … s.t. q = q0  q1  q2  …, 

    either for all i0,  (K,qi) |=  ,                     
    or exists n0 s.t. 1. for all 0  i < n,  (K,qi) |=         
         2. (K,qn) |=                                   

                                                          

2.  Derive the semantics of   ( () U ()) : 

      (K,q) |=  ( () U ())  iff  ???  



(K,q) |= W 

For all executions starting from q,  is satisfied at or  
before a (the first) violation of . 

(K,q) |= W                                                                iff 
(K,q) |=  ( () U (  ))                                      iff 
 (exists q = q0  q1  ...  qn.  
    for all 0  i < n. (K,qi) |=   and  (K,qn) |=   )   iff 
for all q = q0  q1  ...  qn.  
    exists 0  i < n. (K,qi) |=   or  (K,qn) |=                 iff 
for all q = q0  q1  ...  qn.  
    exists 0  i  n. (K,qi) |=   or  (K,qn) |=                    iff 
for all q = q0  q1  ...  qn.  
    (K,qn) |=   exists 0  i  n. (K,qi) |=  



Important safety properties 

Invariance   a 

 

Sequencing             a W b W c W d 

                               =   a W (b W (c W d)) 



Important safety properties:  mutex protocol 

Invariance         (pc1=in  pc2=in) 

 

Sequencing       ( pc1=req    

                                    (pc2in) W (pc2=in) W (pc2in)  W (pc1=in)) 

                                



Branching properties 

Deadlock freedom        true 

Possibility        (a    b) 

                          

                                    (pc1=req     (pc1=in)) 



CTL (Computation Tree Logic) 

-safety & liveness 

-branching time 

[Clarke & Emerson; Queille & Sifakis 1981] 



CTL Syntax 

   ::=   a  |      |     |     |   U   |   



CTL Model 

( K, q ) 

fair state-transition graph  state of K 



CTL Semantics 

 

 (K,q)  |=       iff    exist  q0, q1, ...  s.t. 

                                   1.  q = q0  q1  ...  is an infinite fair run 

                 2.  for all i  0,  (K,qi) |=                      



          EG         exists always 

   =          AF         forall eventually 

 

 W  =  ( U )  ( )    

 U   =  ( W )  () 

Defined modalities 



Important liveness property 

Response     (a    b) 

 

      (pc1=req     (pc1=in)) 


