
Model Checking

Lecture 1

Outline

1 Specifications: logic vs. automata, linear vs.
branching, safety vs. liveness

2 Graph algorithms for model checking

3 Symbolic algorithms for model checking

4 Pushdown systems

Model checking, narrowly interpreted:

Decision procedures for checking if
a given Kripke structure is a model
for a given formula of a modal logic.

Why is this of interest to us?

Because the dynamics of a discrete system can
be captured by a Kripke structure.

Because some dynamic properties of a discrete
system can be stated in modal logics.



Model checking = System verification

Model checking, generously interpreted:

Algorithms, rather than proof calculi,
for system verification which operate on
a system model (semantics), rather than
a system description (syntax).

There are many different model-checking problems:

 for different (classes of) system models

 for different (classes of) system properties

A specific model-checking problem is defined by

I |= S

“implementation”
(system model)

“specification”
(system property)

“satisfies”, “implements”, “refines”
(satisfaction relation)

A specific model-checking problem is defined by

I |= S

“implementation”
(system model)

“specification”
(system property)

“satisfies”, “implements”, “refines”
(satisfaction relation)

more detailed more abstract

Characteristics of system models which favor model
checking over other verification techniques:

ongoing input/output behavior
(not: single input, single result)

concurrency
(not: single control flow)

control intensive
(not: lots of data manipulation)

Examples

-control logic of hardware designs

-communication protocols

-device drivers

Paradigmatic example:

mutual-exclusion protocol

loop

 out: x1 := 1; last := 1

 req: await x2 = 0 or last = 2

 in: x1 := 0

end loop.

loop

 out: x2 := 1; last := 2

 req: await x1 = 0 or last = 1

 in: x2 := 0

end loop.

||

P1 P2

Model-checking problem

I |= S

system model system property

satisfaction relation

Model-checking problem

I |= S

system model system property

satisfaction relation

Important decisions when choosing a system model

-state-based vs. event-based

-interleaving vs. true concurrency

-synchronous vs. asynchronous interaction

-etc.

Particular combinations of choices yield

CSP

Petri nets

I/O automata

Reactive modules

etc.

While the choice of system model is important for
ease of modeling in a given situation,

the only thing that is important for model checking
is that the system model can be translated into
some form of state-transition graph.

a

a,b b

q1

q3 q2

State-transition graph

Q set of states {q1,q2,q3}

A set of atomic observations {a,b}

  Q  Q transition relation q1  q2

[]: Q  2A observation function [q1] = {a}

set of observations

Mutual-exclusion protocol

loop

 out: x1 := 1; last := 1

 req: await x2 = 0 or last = 2

 in: x1 := 0

end loop.

loop

 out: x2 := 1; last := 2

 req: await x1 = 0 or last = 1

 in: x2 := 0

end loop.

||

P1 P2

oo001

rr112

ro101 or012

ir112

io101

pc1: {o,r,i}
pc2: {o,r,i}
x1: {0,1}
x2: {0,1}
last: {1,2}

33222 = 72 states

The translation from a system description
to a state-transition graph usually involves
an exponential blow-up !!!

e.g., n boolean variables  2n states

This is called the “state-explosion problem.”

Finite state-transition graphs don’t handle:
- recursion (need pushdown models)

- process creation

We will talk about some of these issues in a later
lecture.

State-transition graphs are not necessarily finite-state

Model-checking problem

I |= S

system model system property

satisfaction relation

Three important decisions when choosing system properties:

1 automata vs. logic

2 branching vs. linear time

3 safety vs. liveness

Three important decisions when choosing system properties:

1 automata vs. logic

2 branching vs. linear time

3 safety vs. liveness

The three decisions are orthogonal, and they lead to
substantially different model-checking problems.

Three important decisions when choosing system properties:

1 automata vs. logic

2 branching vs. linear time

3 safety vs. liveness

The three decisions are orthogonal, and they lead to
substantially different model-checking problems.

Safety vs. liveness

Safety: something “bad” will never happen

Liveness: something “good” will happen
 (but we don’t know when)

Safety vs. liveness for sequential programs

Safety: the program will never produce a
 wrong result (“partial correctness”)

Liveness: the program will produce a result
 (“termination”)

Safety vs. liveness for sequential programs

Safety: the program will never produce a
 wrong result (“partial correctness”)

Liveness: the program will produce a result
 (“termination”)

Safety vs. liveness for state-transition graphs

Safety: those properties whose violation always
 has a finite witness
 (“if something bad happens on an infinite
run, then it happens already on some finite
prefix”)

Liveness: those properties whose violation never
 has a finite witness
(“no matter what happens along a finite run,
something good could still happen later”)

a

a,b b

q1

q3 q2

Run: q1  q3  q1  q3  q1  q2  q2 

Trace: a  b  a  b  a  a,b  a,b 

State-transition graph S = (Q, A, , [])

Finite runs: finRuns(S)  Q*

Infinite runs: infRuns(S)  Q

Finite traces: finTraces(S)  (2A)*

Infinite traces: infTraces(S)  (2A)

Safety: the properties that can be
 checked on finRuns

Liveness: the properties that cannot be
 checked on finRuns

Safety: the properties that can be
 checked on finRuns

Liveness: the properties that cannot be
 checked on finRuns

 (they need to be checked on
 infRuns)

This is much easier.

Example: Mutual exclusion

It cannot happen that both processes are in
their critical sections simultaneously.

Example: Mutual exclusion

It cannot happen that both processes are in
their critical sections simultaneously.

Safety

Example: Bounded overtaking

Whenever process P1 wants to enter the critical
section, then process P2 gets to enter at most
once before process P1 gets to enter.

Example: Bounded overtaking

Whenever process P1 wants to enter the critical
section, then process P2 gets to enter at most
once before process P1 gets to enter.

Safety

Example: Starvation freedom

Whenever process P1 wants to enter the critical
section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually.

Example: Starvation freedom

Whenever process P1 wants to enter the critical
section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually.

Liveness

a

a,b b

q1

q3 q2

infRuns  finRuns

a

a,b b

q1

q3 q2

infRuns  finRuns

*
closure

*finite branching

For state-transition graphs,
all properties are safety properties !

Example: Starvation freedom

Whenever process P1 wants to enter the critical
section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually.

Liveness

a

a,b b

q1

q3 q2

Fairness constraint:

the green transition cannot be ignored forever

a

a,b b

q1

q3 q2

Without fairness: infRuns = q1 (q3 q1)* q2
  (q1 q3)

With fairness: infRuns = q1 (q3 q1)* q2


Two important types of fairness

 1 Weak (Buchi) fairness:
 a specified set of transitions cannot be
 enabled forever without being taken

 2 Strong (Streett) fairness:
 a specified set of transitions cannot be
 enabled infinitely often without being taken

a

a,b b

q1

q3 q2

Strong fairness

a

a,b

q1

q2

Weak fairness

Fair state-transition graph S = (Q, A, , [], WF, SF)

WF set of weakly fair actions

SF set of strongly fair actions

where each action is a subset of 

Weak fairness comes from modeling concurrency

loop x:=0 end loop. loop x:=1 end loop. ||

x=0 x=1

Weakly fair action
Weakly fair action

Strong fairness comes from modeling choice

Strongly fair action
Strongly fair action

loop m:
 n: x:=0 | x:=1
end loop.

pc=n
x=0

pc=n
x=1

pc=m
x=0

pc=m
x=1

Weak fairness is sufficient for
asynchronous models
(“no process waits forever if it can move”).

Strong fairness is necessary for modeling
resource contention.

Strong fairness makes model checking
more difficult.

Fairness changes only infRuns, not finRuns.



Fairness can be ignored for checking safety properties.

The vast majority of properties to be
verified are safety.

While nobody will ever observe the violation
of a true liveness property, fairness is a
useful abstraction that turns complicated
safety into simple liveness.

Two remarks

Three important decisions when choosing system properties:

1 automata vs. logic

2 branching vs. linear time

3 safety vs. liveness

The three decisions are orthogonal, and they lead to
substantially different model-checking problems.

Fair state-transition graph S = (Q, A, , [], WF, SF)

Finite runs: finRuns(S)  Q*

Infinite runs: infRuns(S)  Q

Finite traces: finTraces(S)  (2A)*

Infinite traces: infTraces(S)  (2A)

Linear time: the properties that can be
 checked on infTraces

Branching time: the properties that cannot
 be checked on infTraces

Branching vs. linear time

a

x x x

a

b b c c

Same traces {axb, axc}
Different runs {q0 q1 q3, q0 q2 q4}, {q0 q1 q3, q0 q1 q4}

q0
q0

q2 q1 q1

q4 q4 q3 q3

a

x x x

a

b b c c

q0
q0

q2 q1 q1

q4 q4 q3 q3

Linear-time:
In all traces, an x must happen immediately followed by b

a

x x x

a

b b c c

q0
q0

q2 q1 q1

q4 q4 q3 q3

Linear-time:
In all traces, an x must happen immediately followed by b or c

a

x x x

a

b b c c

q0
q0

q2 q1 q1

q4 q4 q3 q3

Branching-time:
An x must happen immediately following which
a b may happen and a c may happen

a

a a a

a

b b c c

Same traces, different runs (different trace trees)

Three important decisions when choosing system properties:

1 automata vs. logic

2 branching vs. linear time

3 safety vs. liveness

The three decisions are orthogonal, and they lead to
substantially different model-checking problems.

 Linear Branching

Safety STL

Liveness LTL CTL

Logics

STL (Safe Temporal Logic)

- safety (only finite runs)

- branching

Defining a logic

1. Syntax:

 What are the formulas?

2. Semantics:

 What are the models?

 Does model M satisfy formula  ? M |= 

Propositional logics:

 1. boolean variables (a,b) & boolean operators (,)

 2. model = truth-value assignment for variables

Propositional modal (e.g., temporal) logics:

 1. ... & modal operators (,)

 2. model = set of (e.g., temporally) related prop. models

Propositional logics:

 1. boolean variables (a,b) & boolean operators (,)

 2. model = truth-value assignment for variables

Propositional modal (e.g., temporal) logics:

 1. ... & modal operators (,)

 2. model = set of (e.g., temporally) related prop. models

observations

state-transition graph (“Kripke structure”)

atomic observations

STL Syntax

 ::= a |    |   |   |  U 

boolean variable
(atomic observation)

boolean operators

modal operators

STL Model

(K, q)

state-transition graph
(Kripke structure)

state of K

STL Semantics

(K,q) |= a iff a  [q]

(K,q) |=    iff (K,q) |=  and (K,q) |= 

(K,q) |=  iff not (K,q) |= 

(K,q) |=   iff exists q’ s.t.
 q  q’ and (K,q’) |= 

(K,q) |=  U  iff exists q = q0  q1  ...  qn.
 1. for all 0  i < n, (K,qi) |= 
 2. (K,qn) |= 

 EX exists next

  =  AX forall next

U EU exists until

  = true U  EF exists eventually

  =    AG forall always

W =  (() U (  ))

 AW forall waiting-for
 (forall weak-until)

Defined modalities

Exercise

1. Derive the semantics of W :

(K,q) |= W iff for all q0, q1, q2, … s.t. q = q0  q1  q2  …,

 either for all i0, (K,qi) |=  ,
 or exists n0 s.t. 1. for all 0  i < n, (K,qi) |= 
 2. (K,qn) |= 

2. Derive the semantics of  (() U ()) :

 (K,q) |=  (() U ()) iff ???

(K,q) |= W

For all executions starting from q,  is satisfied at or
before a (the first) violation of .

(K,q) |= W iff
(K,q) |=  (() U (  )) iff
 (exists q = q0  q1  ...  qn.
 for all 0  i < n. (K,qi) |=   and (K,qn) |=   ) iff
for all q = q0  q1  ...  qn.
 exists 0  i < n. (K,qi) |=  or (K,qn) |=    iff
for all q = q0  q1  ...  qn.
 exists 0  i  n. (K,qi) |=  or (K,qn) |=  iff
for all q = q0  q1  ...  qn.
 (K,qn) |=   exists 0  i  n. (K,qi) |= 

Important safety properties

Invariance  a

Sequencing a W b W c W d

 = a W (b W (c W d))

Important safety properties: mutex protocol

Invariance   (pc1=in  pc2=in)

Sequencing  (pc1=req 

 (pc2in) W (pc2=in) W (pc2in) W (pc1=in))

Branching properties

Deadlock freedom   true

Possibility  (a   b)

  (pc1=req   (pc1=in))

CTL (Computation Tree Logic)

-safety & liveness

-branching time

[Clarke & Emerson; Queille & Sifakis 1981]

CTL Syntax

 ::= a |    |   |   |  U  | 

CTL Model

(K, q)

fair state-transition graph state of K

CTL Semantics

 (K,q) |=   iff exist q0, q1, ... s.t.

 1. q = q0  q1  ... is an infinite fair run

 2. for all i  0, (K,qi) |= 

 EG exists always

  =  AF forall eventually

 W = ( U )  ( )

 U  = ( W )  ()

Defined modalities

Important liveness property

Response  (a   b)

  (pc1=req   (pc1=in))

