Microsoft:

Research

CodeContracts:

Specification & Verification
for the working programmer
Francesco Logozzo

joint work with
M. Barnett and M. Fahndrich

odeContracts“ Impact

 APl'in .NET 4.0

© Externally available ~20 months
© >50,000 downloads, very active forum
© 3 book chapters on CodeContracts
® Many dozens of blog articles
© Active forum

® Internal and external adoption

© Publications, talks, lectures

© POPL, ECOOP, OOPSLA, VMCAI, APLAS, SAS,
SAC, FoVeQOS, VSTTE ..

http://www.amazon.com/Depth-What-you-need-master/dp/1933988363/ref=sr_1_1?ie=UTF8&s=books&qid=1275579004&sr=8-1
http://www.amazon.com/CLR-via-Dev-Pro-Jeffrey-Richter/dp/0735627045/ref=sr_1_1?ie=UTF8&s=books&qid=1275579092&sr=1-1
http://www.amazon.com/C-4-0-Nutshell-Definitive-Reference/dp/0596800959/ref=sr_1_3?ie=UTF8&s=books&qid=1275579121&sr=1-3

2rogram verification

® “The program does not go wrong"
© What does it means?

® |t does not crash
© Division by zero
© Dereference of null (or O or nil)
® No exception is thrown

e coe
° It meets its specification
© Specification???
® What's that? =

Microsoft:

Research

Verification 101

o ec_lflcatlon

® Informally: What the program should do”
® "It should sort all the elements of the array”

© Computers do not like English
@ (or Italian for what it matters ;-)

® Which formal language?
® How close to the computer?
® How close to the human?
® How close to the programmer?
© How close to the verification tool?

¢ Implementation

Temporal Logic?

Z (B) notation?

UML?

TLA+ ?

Abstract state machines (ASM)?
JML? Code Contracts?

SAL?

®» ® ® ® ® ®» ® ® @

Many many

A
-

Specification

The program behavior is included in the
behaviors admissible from the specification:

Program is correct ©
Program

Specification

Program is incorrect ®

Program (Some behavior may not meet the specification)

Low do we lchﬂeck Ootates?

© The problem is undecidable
® Need to perform abstraction
® |n the concrete:
® |s the program correct? Yes/No
® |n the abstract:
® |s the program correct? Yes/No/I do not know
© Which abstraction?

© Upper-approximate the program semantics
© Under-approximate the specification semantics

geotato (when lucky)

Add behaviors

A

Specification

Prog ram d Remove specification

"Potato When unlucky)

ll '

A

Specification

Add behaviors
In this case, too many!

prog ram Remove specification

The over-approximation of the program
behavior is not included in the under-

Lo “';l....l'l; i

@ Specification
° How do we specify the intent?
© We should not over-specify
© Verification

® How do we check the program is doing the
right thing?
© Runtime (testing)
@ Static time (verification)

Microsoft-
Research

Specification with
Contracts

gContracts?

‘ I|

© Each program module specifies

© What it expects from its users
® Precondition

@ What it ensures to its users
® Postcondition

® What holds in a stable state
® Object invariants

¢ Document design decisions

C#

puklic wvirtual int Hext(
int minValue,
int mazWalue

Precondition

Parameters
minValus
Type: System.Int32
The inclusive lower bound of the random number returned.

raxValue

Type: System.Int32
The exclusive upper bound of the random number returned. maxVaive must be greater than or equal to minValle.

Return Value

Type: System.Int32
A 32-bit signed integer greater than or egual to minValue and less than maxValue; that is, the range of return values in

returned.

i @ Exceptions

udes minVaiue but not maxValve. If minValue equals maxValue, minVaiue is

Postcondition

Exception Condition
ArgumentOutOfRangeException minVaiue is greater than maxValue.
[Remarks

Unlike the other overloads of the Next method, which return only non-negative values, this method can return a negative random integer.

Motes to Inheritors:
Starting with the .NET Framework version 2.0, if you derive a class from Random and override the Sample method, the distribution provided by the derived class implementation of the

Sample method is not used in calls to the base class implementation of the Random.Next(Int32, Int32) method overload if the difference between the minVaiue and maxValue parameters is
greater than Int32.MaxValue. Instead, the uniform distribution returned by the base Random class is used. This behavior improves the overall perfformance of the Random class. To modify
this behavior to call the Sample method in the derived class, you must also override the Random.Next{Int32, Int32) method overload.

300

fContracts What for?

° Amplify runtime checklng (debugglng)

© More assertions in the code

® More stable the code

@ Assertions can be disabled
in release builds

© Enable modular static analysis

® Improved precision
© Analysis should not assume worst case
© More scalability

@ A little bit as a type checker (but more refined!)

5- |("

gBut we already have assertiog

@ All Ianguages have an assert
© assert(exp) macro in C/C++
@ assert exp keyword in Java
© Debug.Assert(exp) static method in .NET

@ Assert is not visible from the caller!

static public int GCD(int x, int y)

{
Debug.Assert(x > 0);

Debug.Assert(y > 0);

@ Use exceptions for parameter validation:

static public int GCD(int x, int y)
{
if (x < Q)
throw new ArgumentException("Error");

.}

At library surface

To protect from unwanted values
To early detect APl misuses
Again, not visible to callers

® ® ® ®

—

'- " we have Debug Assert

© Cannot (easily) specify a postcondition

static public int GCD(int x, int y)

{
Debug.Assert(x > 0);

Debug.Assert(y > 90);

while (true)
if (x <y) {y %= x; if (y == @) return x; }
else { x %= y; if (x == @) return y; }

® |Inheritance
® Precondition: Should be weaker
© Postcondition: Should be stronger
® How do | enforce it?

© Object invariants

© Valid in steady states
® Ex:this.x != null

® Should | add it at every method?

® |nterfaces, abstract methods
® Where | put my assert?

|\ 6\ @

ntracts yesterday.

© First class citizens in the language

© Provide syntax to express contracts
© Examples: Eiffel, D, Spec# ...

decrement is

-- Decrease counter by one.
require

item =0
do

item = item - 1
ensure

iterm = old item - 1
end

® Why not everyone was using it?

® New language (start from scratch, or almost)
2 New compﬁer.(dgyog trust it?)

-Contracts esterday.

I‘.q S PR TR

Inside comments or as code annotation
© Ex. JML, Eclipse for non-null ..

//@ public invariant balance >= 0 && balance <= MAX BALANCE;

ff@ assignable balance
S8 ensures balance == G;
public BankingExample () { balance = 0; }

S8 requires 0 < amount && amount 4+ balance < MAX BALANCE:
/ /@ assignable balance: -

/@ ensures balance == ‘“old(balance + amount) ;

public woid credit({int amount) { balance += amount; }

S8 requires 0 < amount && amount <= balance;
ff@ assignable balance;

ff@ ensures balance = %old(balance) - amount;
public woid debit(int amount) { balance -= amount;)

© Why not everyone is using It?
® Persistence?
© Need for serlallzatlon parsing...

AP Y

Microsoft:

Research

]

Code
Contracts

Specn‘y code with code

.. _J - af

N

l Code Centracts

fooaoa s

N
Invaraatfa CONTXAcCT.R
cripts & c =
oy Contract.F
) contracts
rhis.arrin

gCode Contract

l at
- bl

© |dea: Use the IL as contract representation

@ Use static methods to a contract library
© Language agnostic: same for C#, VB, F# ...

Contract.Requires(source != null);
Contract.Requires(!String.IsNullOrEmpty(suffix));

Contract.Ensures(Contract.Result<string>() != null);
Contract.Ensures(!Contract.Result<string>().EndsWith(suffix));

Contract.Assert(trimmed IsNot Nothing)|
Contract.Assert(Not trimmed.EndsWith(".d11"))

| hat are the___?“_,__

@ Plain code for contracts

@ Static methods to a contract library

® Language agnostic: same for C#, VB, F# ...
@ Standard from .NET 4.0

® No need for a new compiler/language
e Precondition: Contract.Requires(...)

@ Postcondition: Contract.Ensures(...)
® |nvariant: Contract.Invariant(...)

;".,rEE(:<:)r](:|iti(:>r)§?mﬂ.

@ Contract.Requires(exp)

int foo(String s, int y)
{

Contract.Requires(s != null);
Contract.Requires(y > 0);

Sy
}

CH# expressions

reconditions _

© Which is the underlying language
specification?

four programming language!!!

Public Function foo(ByVal s As String, ByVal y As Integer)
As Integer
Contract.Requires(s IsNot Nothing)

Contract.Requires(y > 0)
End Function
7 gc* foo(String gc* s, Int32 gc* y)
ontract::Requires(s != 0);

Contract::Requires(y > 0);

gostconditions

[N 18 S PRRA T

© Contract.Ensures(exp)

Class Field
{

int x;

int Set(int y)
{

Contract.Ensures(this.x == y);
this.x = y;

° |In C#/VB/... no name for the returned value
© Use a dummy method

public int Fact(int x)
{

Contract.Ensures(Contract.Result<int>() >= 0);

—kmmm

© Why <int> ?
© Why <bool[]> ?

public int Fact(int x)
{

Contract.Ensures(Contract.Result<int>() >= 0);

} public bool[] ArrayFactory(int x)
{

Contract.Ensures(Contract.Result<bool[]>() != null);

return new bool[x];
T Contract.Result<T>()

M1 B

}

2
v
o

“ Old value?

N i

© No name for the old value

Class Account
{
int balance; T Contract.0ld<T>(T value)
int Add(int k)
{
Contract.Ensures(this.balance ==
Contract.O0ld(this.balance) + k);
this.balance += k;
}
}

Qaﬂtiﬁers

]

® Limited form:
© Contract.ForAll(0, A.Length, i => A[i] > 0);
© Contract.Exists(0, A.Length, i => A[i] > 0);
© Exploit higher order functions

ass Invarlantz

Class Account

{

int balance;

[ContractInvariantMethod]
protected void ObjectInvariant()

{
}

Contract.Invariant(balance >= 0);

}

O

[ContractClass(typeof(WithdrawContracts))]
interface IWithdraw

{
long Balance { get; }

void Withdraw(long money);

}

[ContractClassFor(typeof(IWithdraw))]

public class WithdrawContracts : IWithdraw {

public long Balance { get {
Contract.Ensures(Contract.Result<long>() >= 0);
return -111; } }

public void Withdraw(long money) {
Contract.Requires(money < this.Balance);}}

@ Abstract classes
@ Similar to interfaces
© Qut/ref parameters
® Use dummy method

© Legacy code: “if lexp throw exception”
@ Use Contract.EndContract()

NS T—

® Produced by all the compilers

® Free:
° Types
° Intellisense
© Name resolution...

© Cross language
® Precise semantics
© Uniform format understood by our tools

Microsoft:
Research

Runtime checking
(aka Testing)

Potato & testing

Specification
One execution is outside the specification

The program is incorrect!

& Potato & testing__

Specification

A of the program behavior is
included in the behaviors admissible from
the specification

Is the program correct?

© Prove the existence of specification violations
® l.e. the existence of bugs
© If a test fails, then there is a bug

© Cannot verify the program
° j.e. the existence of no bug!

® Can try only finitely main inputs

© 100% code coverage do not imply 100% data
coverage

° Yet, very usefull!!!

untime checking of contragts

v'
= '

© C# compiler does not know about contracts

© Achieved via binary rewriting
© Handle old, result ...
® Inherit contracts
@ Stick contracts to interface implementations

public virtual int Add(object value){

.method public hidebysig newslot virtual instance int32 Add(object ‘value’) cil
managed

.method public hidebysig newslot virtual instance int32 Add(object value’) cil
w managed

» /d:CONTRACTS_FULL
csc/vbc/

L\§

Idarg.0
call instance int32 TabDemo.BaseList::get_Count()
Idarg.0

ccrewrite

.method public hidebysig newslot virtual instance int32 Add(object 'value’) cil
manag

Idarg.0
Idfld int32 TabDemo.BaseList::count

Idarg.0
List:d Idfid int32 TabDemo.BaseList::count
Idarg.0
d object[] TabDemo.BaseList:items 4

Idloc.0
tloc.s ‘Contract.Result<int>()"
b IL_007a

Microsoft-
Research

Static verification

potatic verification with potaiios

\ I3

A Add behaviors

Specification

Prog ram d Remove specification

tatlc verlflcatlon

© Any static verification method is incomplete
@ Verification is not decidable

public static bool NotDecidable()

{ Not decidable
if (SolvableDiophantineEquation) CHEES 10th
return 1;
else problem)

Contract.Assert(false);
}

¢ Many, many out there...
© Model Checking

® Theorem proving

@ Automatic
@ SMT solvers, resolution based, ...

@ Semi-automatic
e 2nd grder

@ All those instances of Abstract interpretation!

Microsoft-
Research

Abstract interpretation

gAbstract Interpretation

= TR NTROEPTITY i

® Theory of approximations

@ Semantics are order according to the
precision

© The more the precise the semantics
The more the properties captured

» A static analysis is a semantics

 Precise enough to capture the properties of
Interest

* Rough enough to be computable

-, SiC @e)ple> .:ths

% Concrete domain

© A mathematical structure describing the most
precise information on the program

® Usually the program semantics
@ Traces, operational, denotational ...

® Abstract domain

© A mathematical structure describing the
property of interests

® Ex.: range of a variable

+ “ a_rnple__R__u_l_e__,Q_fgg 1=

© Abstract semantics Is over signs

a[klp = sign(k)

a[x Jp = p(x)

afel +e2]p = afel]pxaffe2]p
afel *e2]p = afel]pZzafe2]p

gample: Rule of signs

(12345565 * 13456) + (-9873 * -1344678)
® Sign of the result?
® Do the computation: 179 397 928 534
® Then take the sign : pos
® Do the abstract computation:
(pos Z pos) £ (neg = neq)
= POS + POS
= pPOos

Microsoft:
Research

CodeContracts
Static checker
aka Clousot

© For each assembly A, class C, method M

1. Extract the proof obligations
What should | prove?

2. Run the analyses
« Discover facts on the program

3. Use the facts to prove the proof obligations
« If not, do something else...

gProof obligations

© Two kinds: Implicit and explicit

° Implicit

© NonNull checking
© Bounds checking
e

Arithmetic: Divisions by zero, overflows,

e ee o
° Explicit
@ Assertions

® When calling a method, its precondition
2 When retugp.ingjrpm‘a[nethod, Its postcondition

i

gi\onNull dereference

public bool IsCiao(string s)
{

return s.Contains("ciao!");

}

® The string s should not be null
© Otherwise, exception at run time

© Generate the proof obligation: s != null

public int[] RandomArray(int len)
{

var random = new Random(len);
var arr = new int[len];
for (var i=0; i < len; i++)

{

arr[i] = random.Next();

}

r

¥

i < arr.Length

public int Abs(int x)

public int Div(int x, int y) {
{ if (x < 9)
return x / y; return -x;
} return x;

}

public string Concat(string p, string q)
{

Contract.Requires(p != null);
Contract.Requires(q != null);

var concat = p + (;

Contract.Assert(concat != null);
Contract.Assert(concat.Length > 0);

return concat;

“Precond 't'ons- #

public string Concat(strlng P, strlng q)

{ . Concat “believes”
Contract.Requires(p != null); (assumes)

Contract.Requires(q != null); those preconditions

/] .
}

public string MyConcat()
{

return Concat("Ciao", null);

2ostconditions

public double Abs(double x)

{
Contract.Ensures(
Contract.Result<double>() >= 0);
if (x < Q)
return -x;
return Xx;
}

Note: the
public double Sqgrt(double z) program is
{

return Math.Sqrt(Abs(z)); | wrong,
} Wwhy???

Sgrt “believ _s”

B (assumes)
B8 Abs(z) >=0

gA\lgorithm: High level

© For each assembly A, class C, method M

1. Extract the proof obligations
What should | prove?

2. Run the analyses
« Discover facts on the program

3. Use the facts to prove the proof obligations
« If not, do something else...

gloferred facts

® Heap structure
© Null/Not-Null

® Numerical values
® Ranges, relations, floating points ...

© Enum values
@ Array/Collection contents

public string TrimSuffix(string s, string suffix)

{

Contract.Requires(s != null);
Contract.Requires(suffix != null);

string res = s;

while (res.EndsWith(suffix))

{
int len = res.Length - suffix.LlLength;

res = res.Substring(@, len);

}

Contract.Assert(res != null);

return res;

gINonNull analysis

® Associate to each variable an element of
T

Null NotNull

ith proof Ob|l ations expl

public string TrimSuffixWPO(string s, string suffix)
{

Contract.Requires(s != null);
Contract.Requires(suffix != null);

string res = s;

Contract.Assert(res != null);
while (res.EndsWith(suffix))
{

Contract.Assert(res != null);

Contract.Assert(suffix != null);
int len = res.Length - suffix.Length;

Contract.Assert(res != null);

res = res.Substring(@, len);

Contract.Assume(res != null); // Postcondition of res
}
Contract.Assert(res != null);

return res;

public string TrimSuffixWPO(string s, string suffix)

{

Contract.Requires(s != null);
Contract.Requires(suffix != null);
s, suffix: NotNull, res : Null

string res = s;

Contract.Assert(res != nulm

while (res.EndsWith(suffix))
{ i res: NotNull

Contract.Assert(res != null);
Contract.Asert(suffix != null)y’
int len = res.Length - suffix/Length;

Contract.Assert(res != null);
res = res.Substring(@, len); - NotNull. res: T
Contract.Assume(res != null); / S "
} s, suffix, res: NotNull
Contract.Assert(res != null);

return res;

)
Le
g |
e

N

g/hat we did?_

© We over-approximated the semantics
© We kept the concrete specification

Specification

Program

xample: Numerical anal SIS

T T el R § S ——

static public int GCD(int x, int y)
{

Contract.Requires(x > 0);
Contract.Requires(y > 0);

Contract.Ensures(Contract.Result<int>() > 0);

while (true)

{

if (x < y)

{ . .
y %= X; We need numerical reasoning
if (y == @)

return X;

}

else . . .

(We need to infer loop invariants
X %=Y;
if (x == 0)

return y;

a.Length

Intervals
O(n)
as<x<hb

N X&)

a.Length

Pentagons
O(n)
as x<b&x<y

a.Length

a.Length

Octagons

O(n3)

a.Length

index

Polyhedra
O(2")

ax, <b
Yes ©

gntervals

© Approximate each variable with a range
[a, b] wherea, b€ Z U { +o0, -00}

® More complex in reality because of

@ Overflows
@ Different Int types (16, 32, 64 bits, signed/unsigned)

© |dea: Replace a value, a set of values with an
Interval

static public int GCD(int x, int y)
{

Contract.Requires(x > 0);

Contract.Requires(y > 0);

X i[1,+0] y :[1,+00]

Contract.Ensures(Contract.Result<int>() > 0);

i3, 4] y (1, 0]
while (true)
{
if (x < y)
{ X :[1)+OO]J y:[zJ +OO]
y %= X;
if (y == 0) X :[1,+00], y:[0, +o]
return X;
} X :[1J+OO]J y:[lJ +OO]
else
t x :[1,4+0], y:[1, +o]
X %=Y;
if (x == 0) x :[@,+00], y:[1, +o]
return y;

X :[1,+00], y:[1, +oo]

B0

[
&

public void AllToZero(int[] a)
{

for (int i = @; i < a.Length; i++)

{ . a.Length :]0.
Contract.Assert(i >= 0);

Contract.Assert(i < a.Length);

al[i] = o;

Vhat are we missing?

® Intervals keep only numerical information

© No symbolic information
® Ex.1 < a.Length

® No relations

® |Intervals are an example of a non-relational
domain

® Non-null is non-relational too

© Capture properties in the form of

Xel[a,bj]aAx<y
® X, Yy variables
@ a, b constants

© Elements are pairs of maps
(Var — Intv) x (Var — gp(Var))
® |Information is propagated

a.Length

® "reduction”

index

RN T
L s

© Needed for more complex examples
° Sax. <kodSax =BAB<k

® Introduce a slack variable 3
© Reduced product of

® |ntervals
@ Scalable, fast...
® | near Equalities
® Precise join, fast ...
© Challenge: Have a precise Join

ginferring array contents...
public void Init(int N) Challenge 1:
{ Effective handling of disjunction

Contract.Requires(N > 0);

int[] a = new int[N]; ;
int i = o; I == 0 then
a not initialized
while (1 < N) else ifi>0 .
{ al0] == ... a[i] == 222
a[i] = 222; else

impossible

Contract.Assert(V k € [0, N). a[k] == 222);

Challenge 2:

No overapproximation (can be unsound)
(no hole, all the elements are initialized)

© Precise and very very fast!

© Basis: Array segments
Segment bounds Uniform content abstraction

A
[222, 2272] |, k !

Contract. Requ1res(N > 0);

int[] a = new int[N];

assume 1 N| assume i

222

222

jo-> i

1,i+1,3

Segment unification

0,1 0 \|

Can be empty segments!
(Disjunction)

Contract.Requires(N > 0);
int[] a = new int[N];

assume i 2 N|

\
i->
| N jo-> 1
We visited all the N -> N

elements in [0, N)

gA\lgorithm: High level

© For each assembly A, class C, method M

1. Extract the proof obligations
What should | prove?

2. Run the analyses
« Discover facts on the program

3. Use the facts to prove the proof obligations

« |f not, do something else...

= I’OVI ng.things ___

® We inferred many facts on the program
© We use those to prove assertions
© Algorithm:

® For each assertion a at program point p
® For each set of facts F
® Check if F(p) implies a:
® True: It is always ok
© False: It Is always not ok
© Bottom: The assertion is never reached
° Top: We do not know

Z_g, 'do we get Top?

® The analysis is not precise enough

© Abstract domain not precise
® Widening loses too many constraints

@ Algorithmic properties
° Implementation bug
® Incompleteness

@ Some contract Is missing
® Precondition or Postcondition
® Object-invariant

© The assertion is sometimes wrong

. >

ncremental analysis in Clouiso

© First analyze with “cheap” domains
° If check I= Top
Done!
@ If check == Top
Try a more precise domain
© On the average great performance gains
@ Persist analysis options in different runs

Domain Domain Domain
D1 D2 D3

L’ ,}'C'.'/
~a %

-

3]

Disjunctions

® (So far) Join approximates disjunction
© Compact representation

® Sometimes not enough:

| public string Simple2(bool b)

public int Simple(bool b) {
{ Contract.Ensures(
int z; Contract.Result<string>() == null
if (b) || Contract.Result<string>().Length > @);
z = 12;
else if (b)
z = -12; return null;
return 1 / z; else
} return "Ciao!";
}

c

\ & ’
“ﬁ‘? i e
B

-
<
M

he solution in Clousot

@ Backward analysis
© The failing assertion is pushed back to the

program ‘
H \ =
| N
public int Simple(bool b) a
{ 4
int z;
if (b)
z = 125 . [12, 12 2 1= ¢
else RN
z = -12;
return 1 / z; ‘T - oo 400 . .
} —

- ”'- ‘,

I o |

lore com I“ex examples

public string Simple2(bool b)
{
Contract.Ensures(
Contract.Result<string>() == null
|| Contract.Result<string>().Length > 0);

if (b)

return null;
else

return "Ciao!";

xam ole with loo

ol
W

public void NonNull()

{
for (int i = @; i < 5; i++)
{ oo T

foo: T ."ﬂoﬂ' Ul
Contract.Assert(foo != null);

¥

foo += "foo";

Microsoft:
Research

Contract
Inference

gldeal world

® Programmers write all the contracts
® Even loop invariants?

© Reality
@ Should infer “evident” contracts

L b
i i

gPrecondition inference

public int ZeroValues(int[] a)

{ int count = 0;
for (int i = @; i < a.Length; i++)
{ X
if (a[i] == @)
count++;
}
return count;
} |

i) 1 CeodeContracts: Suggested precondition: Contract.Requires(a != null};

4 2 CodeContracts: Possible use of a null array 'a’

he oroblem__

S An Inferred precondltlon should
© Remove bad runs
© Keep all the good runs

@ Several algorithms in Clousot
@ Precision/cost tradeoff

Static Checking

Perform Static Contract Checking Check in Background Show sguigglies
Implicit Mon-Mull Cbligations [Implict Arthmetic Obligations [Cache Results
Implicit Amay Bounds Obligations [] Redundant Assumptions [7] Show Assumptions
[Implict Enum Writes Obligations [] Implicit Pointer Usage Obligations
Infer Requires Suggest Requires Digjunctive Requires
[Infer Ensures Suggest Ensures
[Infer Invariants for readonly [Suggest Invariants for readonly

low i

[Baseline Update Warming Level: U

esolution“

® Propagate a failing assertion the entry

® |If it respects the visibility rules,
® then it is a precondition

@ QOtherwise
® Try to suggest as object invariant
@ E.g. assertion on private fields on public method

© Try to suggest as an assumption
® The programmer is making some implicit assumption

gPostcond tion inferencesthes

® Have a method m

® For each program point

@ Abstract state a
© Approximate the concrete states at that point

© Take the abstract state at the exit point of
the method

public int HalfSum(int x, int y)
{

Contract.Requires(x >= 0);
Contract.Requires(y >= 0);

return x + (y - x) / 2;
}

CodeContracts: Suggested pDEtEIIIHdItIIIIr'I Contract.Ensures{Contract.Result<System.Int32= () == 0;
Juie =

T~
oYV

Filter locals

Take into account inheritance rules
Remove redundant information

° Ex.x>=0,y==0,x+y>=0

Avoid suggesting existing precondition

Microsoft:
Research

Message prioritization

0 we have a Top...

© We should report it to the programmer

© It can be:
® areal bug?
© a false positive?

® In general impossible to tell
© Undecidability of the analysis

© Should sort all the messages
® The one most likely to be bugs at the top

: TWarnin _partitioning.

@ Partition warnings in classes

@ Contract violation

© Non-null

® Arrays
e

Overflows
e

© Assign a fixed reward R to each class
® Re[C— N]

® The highest the reward the more important

False = 1.0 * R(c)
¢ Important
° Always wrong...

Bottom = 0.75 * R(c)

® Unreached, we wanted it?
Top = 0.50 * R(c)

© So many ...

True = 0 * R(c)

® Don't care

Scale rewards with info

© Proof obligation p contains
© Variables from parameters
© Variables result of a method call

e L)

)

® The scale the reward

public foo(int z)

{
// ...
Contract.Assert(z + x > 0);

var f = Add();
Contract.Assert(f != null);
/] ...

Microsoft-
Research

Caching

© At design time, few changes between two
builds

© Avoid re-analysis by caching

@ Algorithm

@ Construct the CFG for the method
® Includes contracts explicit/inferred

@ Hash the CFG
@ If in the DB, just report the same output

@ QOtherwise, re-analyze the method
® Save it in the cache

=3 b3
cA v 2=

AP Y

\p\®

Microsoft-
Research

Floating points...

%B Q‘v-

© But computer numbers are not
mathematical ones!

® Plethora of Int*

© Int8, Intl6, Int32, Int64, Bigint
® UlInt8, Ulntloe, UInt32, UInt64

© And even more fun:
Floating points

baidd

g > 0= X +Y > X2

True: Epsilon >0

Contract.Assert(Double.Epsilon != Double.Epsilon * Double.Epsilon);

Contract.Assert(l1.0d == 1.0d + Double.Epsilon);
Contract.Assert(1000000000d 1000000000d + Double.Epsilon);

double x, y, z, r;

X = 1.000000019e+38d;
y = X + 1.0e21d;

Z = X - 1.0e21d;
r=y - z;

Contract.Assert(r

2.0e21d);

Assert is false!

Assert is truel!

Contract.Assert(0.0 == 0.0); .
Contract.Assert(Double.Negativelnfinity == Double.NegativelInfinity);
Contract.Assert(Double.NaN == Double.NaN);

1/0 is NaN
B Sqart(-1) is NaN

double x, y, z, r;

X = 1.000000019e+38d;
y = X + 1.0e21d;

Z = X - 1.0e21d;
r=y - z;

Contract.Assert(r ==

0.0d);

public class Point

{
public double X, Y;

Point(double x, double y)
{
this.X
this.Y

}
}

X5
Y

public CreatePoint(double x)
{

var p = new Point(x, x);

Contract.Assert(x == p.X);
}

© A double is a synonym for Float64

© A Float64 is represented
° in RAM with 64 bits
@ in the CPU with 80 bits!!!

b

CPU 80@

Microsoft:

Research

Conclusions...

'CdeContracts

I oo PRI T

A L
i

© Specify code with code

© No change to the build environment
© Part of .NET v4

© Documentation generation
© Runtime checking

@ Static checking
© Based on abstract interpretation
® Predicatable, tunable, scalable, automatic!!!!

