
5/7/2009

1

CSE P503:

Principles of Software Engineering

David Notkin

Spring 2009

Tonight‟s agenda

• Grades: 1st essay

– https://catalysttools.washington.edu/gradebook/notkin/5243

• Software testing: general approaches, attitudes, and

more

– Also, time-permitting – Cooperative Bug Isolation

and Test Prioritization

– Next week: More technical stuff (concolic testing –

mixing symbolic and concrete testing, etc.)

• Discussion: NATO and SWEBOK reports

• May 21st

• One-minute paper

UW CSE P503 David Notkin ● Spring 2009 2

Do you work in software testing?

• 30 seconds each to characterize what you do in

testing…

UW CSE P503 David Notkin ● Spring 2009 3

Free association: “Software testing”

• Small groups then we‟ll merge

UW CSE P503 David Notkin ● Spring 2009 4

https://catalysttools.washington.edu/gradebook/notkin/5243

5/7/2009

2

Many points of view on testing

• Showing what you did is right

• Showing what somebody else did is wrong

• …more?

UW CSE P503 David Notkin ● Spring 2009 5

Steve McConnell

• “Testing by itself does not improve software quality.

Test results are an indicator of quality, but in and of

themselves, they don't improve it. Trying to improve

software quality by increasing the amount of testing is

like trying to lose weight by weighing yourself more

often. What you eat before you step onto the scale

determines how much you will weigh, and the

software development techniques you use determine

how many errors testing will find. If you want to lose

weight, don't buy a new scale; change your diet. If

you want to improve your software, don't test more;

develop better.”

UW CSE P503 David Notkin ● Spring 2009 6

Cem Kaner & James Bach

• “Testing is an empirical investigation conducted to

provide stakeholders with information about the

quality of the software under test.”

• “Testing is questioning a product in order to evaluate

it.

– “The „questions‟ consist of ordinary questions

about the idea or design of the product, or else

questions implicit in the various ways of

configuring and operating the product.

– “The product „answers‟ by exhibiting behavior,

which the tester observes and evaluates.”

UW CSE P503 David Notkin ● Spring 2009 7

Herb Simon (via wikipedia)

• “Satisficing … is a decision-making strategy which attempts to

meet criteria for adequacy, rather than to identify an optimal

solution. A satisficing strategy may often be (near) optimal if the

costs of the decision-making process itself, such as the cost of

obtaining complete information, are considered in the outcome

calculus.”

• “[Simon] pointed out that human beings lack the cognitive

resources to maximize: we usually do not know the relevant

probabilities of outcomes, we can rarely evaluate all outcomes

with sufficient precision, and our memories are weak and

unreliable. A more realistic approach to rationality takes into

account these limitations: This is called bounded rationality.”

UW CSE P503 David Notkin ● Spring 2009 8

5/7/2009

3

Don Knuth

• “Beware of bugs in the above code; I have only

proved it correct, not tried it.”

UW CSE P503 David Notkin ● Spring 2009 9

Edsger Dijkstra

• “Program testing can be used to show the presence

of bugs, but never to show their absence!”

UW CSE P503 David Notkin ● Spring 2009 10

Pradeep Soundarajan

• “It is not a test that finds a bug but it is a human that

finds a bug and a test plays a role in helping the

human find it.”

UW CSE P503 David Notkin ● Spring 2009 11

A few more

• “Testing is a skill. While this may come as a surprise

to some people it is a simple fact.” (Fewster,

Graham)

• “Testing a product is a learning process.”(Marick)

• “Everything really interesting that happens in

software projects eventually comes down to people.”

(Bach)

• “Any process that tries to reduce software

development to a „no brainer‟ will eventually produce

just that: a product developed by people without

brains.” (Hunt, Thomas)

UW CSE P503 David Notkin ● Spring 2009 12

5/7/2009

4

http://www.experiencefestival.com/

• “There is considerable controversy among testing

writers and consultants about what constitutes

responsible software testing. The self-declared

members of the Context-Driven School of testing

believe that there are no „best practices‟ of testing,

but rather that testing is a set of skills that allow the

tester to select or invent testing practices to suit each

unique situation. This belief directly contradicts

standards such as the IEEE 829 test documentation

standard, and organizations such as the FDA who

promote them.”

UW CSE P503 David Notkin ● Spring 2009 13

Top 10 Software Testing Quotes
http://www.jinsblog.com

• In God we trust, and for everything else we test.

• If it works, its the developer, if not it's QA

• Software Testers : We succeed where others fail!

• Software Testers Always go to Heaven ... they've already had

their share of Hell!

• Only certainties in life: Death, taxes and bugs in code!

• Every morning is the dawn of a new error

• A bug in the hand is better than one as yet undetected.

• I don't make software; I make software better.

• The Definition of an Upgrade: Take old bugs out, put new ones

in.

• All code is guilty, until proven innocent.

UW CSE P503 David Notkin ● Spring 2009 14

Standard testing questions (M. Young)

• Did this test execution succeed or fail?

– Oracles

• How shall we select test cases?

– Selection, generation

• How do we know when we‟ve tested enough?

– Adequacy

• What do we know when we‟re done?

– Assessment?

15

Testing theory

• Plenty of negative results

– Nothing guarantees correctness

– Statistical confidence is prohibitively expensive

– Being systematic may not improve fault detection

(as compared to simple random testing)

• “So what did you expect, decision procedures for

undecidable questions?”

16

5/7/2009

5

What information can we exploit?

• Specifications: formal or informal

– In oracles

– For selection, generation, adequacy

• Designs …

• Code …

• Usage (historical or models)

• Organization‟s experience

17

When can we stop?

• Ideally: adequate testing ensures some property

(proof by cases)

– Goodenough & Gerhart, Weyuker & Ostrand

– In reality, as impractical as other program proofs

• Practical adequacy criteria are really “inadequacy”

criteria

– If no case from class X has been chosen, surely

more testing is needed …

18

19

Partition testing

• Basic idea: divide program input space into (quasi-)

equivalence classes, selecting at least one test case

from each class

• The devil is in the details – and there are many!

Structural coverage testing

• (In)adequacy criteria – if significant parts of the

program structure are not tested, testing is surely

inadequate

• Control flow coverage criteria

– Statement (node, basic block) coverage

– Branch (edge) and condition coverage

– Data flow (syntactic dependency) coverage

– Others…

• “Attempted compromise between the impossible and

the inadequate”

20

5/7/2009

6

Statement coverage

• Unsatisfying in trivial

cases

if x > y then

max := x

else

max :=y

endif

if x < 0 then

x := -x

endif

z := x;

21

Edge coverage

• Covering all basic

blocks (nodes,

statements) would
not require edge ac

to be covered

• Edge coverage

requires all control

flow graph edges to

be coverage by at

least one test

22

a

b

c

d

e

f

23

Condition coverage

• How to handle compound conditions?
– if (p != NULL) && (p->left < p->right) …

• Is this a single conditional in the CFG? How do you

handle short-circuit conditionals?

• Condition coverage treats these as separate

conditions and requires tests that handle all

combinations

• Modified Condition/Decision Coverage (MCDC)

– Sufficient tsest cases to verify whether every

condition can affect the result of the control

structure

– Required for aviation software by RCTA/DO-178B
24

Path coverage

• Edge coverage is in some sense very static

• Edges can be covered without covering

actual paths (sequences of edges) that the

program may execute

• Note that not all paths in a program are

always executable

– Writing tests for these is hard 

– Not shipping a program until these paths are

executed does not provide a competitive

advantage 

5/7/2009

7

25

Path coverage

• The test suite
{<x = 0, z = 1>,

<x = 1, z = 3>}

executes all edges,
but…

if x ≠ 0 then

y := 5;

else

z := z - x;

endif;

if z > 1 then

z := z / x;

else

z := 0;

end

26

Loop coverage

• Loop coverage also makes path coverage complex

– Each added iteration through a loop introduces a

new path

– Since we can‟t in general bound the number of

loop iterations, we often partition the paths for

testing purposes

• Never, once, many times …

• 10 is a constant often used as a representation

of “many”

Data flow coverage criteria

• Idea: an untested def-

use pair could hide an

erroneous computation

• The increment of y has

two reaching definitions

• The assignment to z

has two reaching
definitions for each of x

and y

• There are many

variants on this kind of

approach

27

x := 7

y := x

y := y+1

z := x+y

Structural coverage: challenges

• Interprocedural coverage

– Interprocedural dataflow, call-graph coverage, etc.

• Regression testing

– How to test version P‟ given that you‟ve tested P

• Late binding in OO – coverage of polymorphism

• Infeasible behaviors: arises once you get past the

most basic coverage criteria

28

5/7/2009

8

29

Infeasibility problem

• Syntactically indicated behaviors that are not
semantically possible

• Thus can‟t achieve “adequate” behavior of test suites

• Could

– Manually justify each omission

– Give adequacy “scores” – for example, 95%
statement, 80% def-use, …

– [Can be deceptive, of course]

• Fault-injection is another approach to infeasibility

Context driven testing: 7 Principles
http://www.context-driven-testing.com/

• The value of any practice depends on its context.

• There are good practices in context, but there are no best

practices.

• People, working together, are the most important part of any

project's context.

• Projects unfold over time in ways that are often not predictable.

• The product is a solution. If the problem isn't solved, the product

doesn't work.

• Good software testing is a challenging intellectual process.

• Only through judgment and skill, exercised cooperatively

throughout the entire project, are we able to do the right things

at the right times to effectively test our products.

UW CSE P503 David Notkin ● Spring 2009 30

Principles in action: illustrations

• Testing groups exist to provide testing-related

services. They do not run the development project;

they serve the project.

• Testing is done on behalf of stakeholders in the

service of developing, qualifying, debugging,

investigating, or selling a product. Entirely different

testing strategies could be appropriate for these

different objectives.

• It is entirely proper for different test groups to have

different missions. A core practice in the service of

one mission might be irrelevant or counter-productive

in the service of another.

UW CSE P503 David Notkin ● Spring 2009 31

Continued

• Metrics that are not valid are dangerous.

• The essential value of any test case lies in its ability to provide

information (i.e. to reduce uncertainty).

• All oracles are fallible. Even if the product appears to pass your

test, it might well have failed it in ways that you (or the

automated test program) were not monitoring.

• Automated testing is not automatic manual testing: it's

nonsensical to talk about automated tests as if they were

automated human testing.

• Different types of defects will be revealed by different types of

tests--tests should become more challenging or should focus on

different risks as the program becomes more stable.

• Test artifacts are worthwhile to the degree that they satisfy their

stakeholders' relevant requirements.

UW CSE P503 David Notkin ● Spring 2009 32

5/7/2009

9

An example from Bach

• Asks students to “try long inputs” for a test requiring

an integer

• Interesting lengths are…?

UW CSE P503 David Notkin ● Spring 2009 33

Key boundaries: most not tried

• 16 digits+: loss of

mathematical precision

• 23+: can‟t see all of the input

• 310+: input not understood

as a number

• 1000+: exponentially

increasing freeze when

navigating to the end of the

field by pressing <END>

• 23,829+: all text in field turns

white

• 2,400,000: reproducible

crash

• Why more not tried?

– Seduced by what‟s

visible

– Think they need the

specification to tell them

the maximum – and if

they have one, stop there

– Satisfied by first

boundary

– Use linear lengthening

strategy

– Think “no one would do

that”

UW CSE P503 David Notkin ● Spring 2009 34

My view: testing has two objectives

• Identifying bugs

• Building confidence

– More accurately, testing is one important

dimension of building confidence in a software

systems

UW CSE P503 David Notkin ● Spring 2009 35

SWEBOK: discussion

UW CSE P503 David Notkin ● Spring 2009 36

5/7/2009

10

NATO 1968-69: discussion

UW CSE P503 David Notkin ● Spring 2009 37

Cooperative bug isolation (Liblit)

UW CSE P503 David Notkin ● Spring 2009 38

Test prioritization (Srivastava & Thiagarajan)

UW CSE P503 David Notkin ● Spring 2009 39

Optional…

• One-minute paper: Key point? Open question? Mid-

course correction?

UW CSE P503 David Notkin ● Spring 2009 40

5/7/2009

11

UW CSE P503 David Notkin ● Spring 2009 41

