
5/15/2009

1

CSE P503:

Principles of Software Engineering

David Notkin

Spring 2009

Tonight’s agenda

• Testing: various

• May 21st

• One-minute paper

UW CSE P503 David Notkin ● Spring 2009 2

Mutation testing

• Mutation testing is an approach to evaluate – and to

improve – test suites

• Basic idea

– Create small variants of the program under test

– If the tests don’t exhibit different behavior on the

variants then the test suite is not sufficient

• The material on the following slides is due heavily to

Pezzè and Young on fault-based testing

UW CSE P503 David Notkin ● Spring 2009 3

Estimation

• Given a big bowl of marbles, how can we estimate

how many?

• Can’t count every marble individually

David Notkin ● Spring 2009UW CSE P503 4

5/15/2009

2

What if I also…

• … have a bag of 100 other marbles of the same size,

but a different color (say, black) and mix them in?

• Draw out 100 marbles at random and find 20 of them

are black

• How many marbles did we start with?

UW CSE P503 David Notkin ● Spring 2009 5

Estimating test suite quality

• Now take a program with bugs and create 100

variations each with a new and distinct bug

– Assume the new bugs are exactly like real bugs in

every way

• Run the test suite on all 100 new variants

– ... and the tests reveal 20 of the bugs

– … and the other 80 program copies do not fail

• What does this tell us about the test suite?

UW CSE P503 David Notkin ● Spring 2009 6

Basic Assumptions

• The idea is to judge effectiveness of a test suite in

finding real faults by measuring how well it finds

seeded fake faults

• Valid to the extent that the seeded bugs are

representative of real bugs: not necessarily identical

but the differences should not affect the selection

UW CSE P503 David Notkin ● Spring 2009 7

Mutation testing

• A mutant is a copy of a program with a mutation: a

syntactic change that represents a seeded bug

– Ex: change (i < 0) to (i <= 0)

• Run the test suite on all the mutant programs

• A mutant is killed if it fails on at least one test case

– That is, the mutant is distinguishable from the

original program by the test suite, which adds

confidence about the quality of the test suite

• If many mutants are killed, infer that the test suite is

also effective at finding real bugs

UW CSE P503 David Notkin ● Spring 2009 8

5/15/2009

3

Mutation testing assumptions

• Competent programmer hypothesis: programs are

nearly correct

– Real faults are small variations from the correct

program and thus mutants are reasonable models

of real buggy programs

• Coupling effect hypothesis: tests that find simple

faults also find more complex faults

– Even if mutants are not perfect representatives of

real faults, a test suite that kills mutants is good at

finding real faults, too

UW CSE P503 David Notkin ● Spring 2009 9

Mutation Operators

• Syntactic change from legal program to legal

program and are thus specific to each programming

language

• Ex: constant for constant replacement

– from (x < 5) to (x < 12)

– Maybe select from constants found elsewhere in

program text

• Ex: relational operator replacement

– from (x <= 5) to (x < 5)

• Ex: variable initialization elimination

– from int x =5; to int x;

UW CSE P503 David Notkin ● Spring 2009 10

Live mutants scenario

• Create 100 mutants from a program

– Run the test suite on all 100 mutants, plus the

original program

– The original program passes all tests

– 94 mutant programs are killed (fail at least one

test)

– 6 mutants remain alive

• What can we learn from the living mutants?

UW CSE P503 David Notkin ● Spring 2009 11

How mutants survive

• A mutant may be equivalent to the original program

– Maybe changing (x < 0) to (x <= 0) didn’t

change the output at all!

– The seeded “fault” is not really a “fault” –

determining this may be easy or hard or in the

worst case undecideable

• Or the test suite could be inadequate

– If the mutant could have been killed, but was not, it

indicates a weakness in the test suite

– But adding a test case for just this mutant is a bad

idea – why?

UW CSE P503 David Notkin ● Spring 2009 12

5/15/2009

4

Weak mutation: a variation

• There are lots of mutants – the number of mutants

grows with the square of program size

• Running each test case to completion on every

mutant is expensive

• Instead execute a “meta-mutant” that has many of

the seeded faults in addition to executing the original

program

– Mark a seeded fault as “killed” as soon as a

difference in an intermediate state is found – don’t

wait for program completion

– Restart with new mutant selection after each “kill”

UW CSE P503 David Notkin ● Spring 2009 13

Statistical Mutation: another variation

• Running each test case on every mutant is

expensive, even if we don’t run each test case

separately to completion

• Approach: Create a random sample of mutants

– May be just as good for assessing a test suite

– Doesn’t work if test cases are designed to kill

particular mutants

UW CSE P503 David Notkin ● Spring 2009 14

In real life ...

• Fault-based testing is a widely used in

semiconductor manufacturing

– With good fault models of typical manufacturing

faults, e.g., “stuck-at-one” for a transistor

– But fault-based testing for design errors – as in

software – is more challenging

• Mutation testing is not widely used in industry

– But plays a role in software testing research, to

compare effectiveness of testing techniques

• Some use of fault models to design test cases is

important and widely practiced

UW CSE P503 David Notkin ● Spring 2009 15

Summary

• If bugs were marbles ...

– We could get some nice black marbles to judge

the quality of test suites

• Since bugs aren’t marbles ...

– Mutation testing rests on some troubling

assumptions about seeded faults, which may not

be statistically representative of real faults

• Nonetheless ...

– A model of typical or important faults is invaluable

information for designing and assessing test suites

UW CSE P503 David Notkin ● Spring 2009 16

5/15/2009

5

Symbolic execution

• Example from Visser, Pasareanu & Mehlitz

UW CSE P503 David Notkin ● Spring 2009 17

[x = 1 ; y = 0] [x = 0 ; y = 1]

int x, y;

if (x > y) { 1 >? 0 0 >? 1

x = x + y; x = 1 + 0 = 1

y = x – y; y = 1 – 0 = 1

x = x – y; x = 1 – 1 = 0

if (x – y > 0) 0 – 1 >? 0

assert(false)

}

C
o

n
c
re

te
 e

x
e

c
u

ti
o

n

Symbolic execution example

UW CSE P503 David Notkin ● Spring 2009 18

[x = X ; y = Y]

int x, y;

if (x > y) { X >? Y

F T

x = x + y; x = X + Y

y = x – y; y = (X + Y) – Y = X

x = x – y; x = (X + Y) – X = Y

if (x – y > 0) Y – X >? 0

assert(false) F T

} “false”

What’s really going on?

• Create a symbolic

execution tree

• At nodes with predicates

explicitly track path

conditions

• Solving path conditions –

“how do you get to this

point in the execution

tree?” – defines test

inputs

• Goal: define test inputs

that reach all reachable

statements

UW CSE P503 David Notkin ● Spring 2009 19

[true]
x = X,y = Y

[true]
X >? Y

[X <=Y]
end

[X > Y]
x = X + Y

…

[X>Y^Y <=X]
end

[X>Y^Y>X]
“false”

Example: from Sen and Agha

int double (int v){

return 2*v;

}

void testme (int x, int y){

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;

}

}

}

• Half of the

groups: directly

find concrete

inputs that

exercise all

reachable

statements

• Other half: do this

using symbolic

analysis

UW CSE P503 David Notkin ● Spring 2009 20

5/15/2009

6

Possible weaknesses of each?

UW CSE P503 David Notkin ● Spring 2009 21

Aside: test inputs vs. test cases

• Just to be clear…

• Although not used consistently, it is useful to

distinguish test inputs (what goes in) from test cases

(what goes in associated with what goes out)

– That is, is there an oracle?

• Useful without oracles for what purposes?

UW CSE P503 David Notkin ● Spring 2009 22

Concolic testing:

• Basically, combine concrete and symbolic execution

• More precisely…

– Generate a random concrete input

– Execute the program on that input both concretely
and symbolically simultaneously

– Follow the concrete execution and maintain the
path conditions along with the corresponding
symbolic execution

– Use the path conditions collected by this guided
process to constrain the generation of inputs for
the next iteration

– Repeat until test inputs are produced to exercise
all feasible paths

UW CSE P503 David Notkin ● Spring 2009 23

Concolic examples

• Standard approach applied to data structures (which

are notoriously difficult to test)

• Variation that addresses situations where the

constraints are hard to solve

• From Sen and Agha

• From Sağlam

UW CSE P503 David Notkin ● Spring 2009 24

http://sp09.pbwiki.com/f/lecture03-concolic.pptx&ei=cakMSqefEJectAPAvMj0Ag&usg=AFQjCNHq3cun4E3NFGnA76zSJtga2d4jBQ&sig2=BJe6kL64QK9qaGx8edc-zg
http://sp09.pbwiki.com/f/lecture03-concolic.pptx&ei=cakMSqefEJectAPAvMj0Ag&usg=AFQjCNHq3cun4E3NFGnA76zSJtga2d4jBQ&sig2=BJe6kL64QK9qaGx8edc-zg
http://sp09.pbwiki.com/f/lecture03-concolic.pptx&ei=cakMSqefEJectAPAvMj0Ag&usg=AFQjCNHq3cun4E3NFGnA76zSJtga2d4jBQ&sig2=BJe6kL64QK9qaGx8edc-zg
http://sp09.pbwiki.com/f/lecture03-concolic.pptx&ei=cakMSqefEJectAPAvMj0Ag&usg=AFQjCNHq3cun4E3NFGnA76zSJtga2d4jBQ&sig2=BJe6kL64QK9qaGx8edc-zg
http://www.cmpe.boun.edu.tr/courses/cmpe58q/spring2009/docs/CUTEpresentation.ppt
http://www.cmpe.boun.edu.tr/courses/cmpe58q/spring2009/docs/CUTEpresentation.ppt
http://www.cmpe.boun.edu.tr/courses/cmpe58q/spring2009/docs/CUTEpresentation.ppt

5/15/2009

7

Concolic: discussion

UW CSE P503 David Notkin ● Spring 2009 25

Test-driven development

• From www.agiledata.org: “Test-driven design (TDD) is an evolutionary

approach to development which combines test-first development where

you write a test before you write just enough production code to fulfill

that test and refactoring. What is the primary goal of TDD? One view

is the goal of TDD is specification and not validation. In other words,

it’s one way to think through your design before your write your

functional code. Another view is that TDD is a programming

technique. As Ron Jeffries likes to say, the goal of TDD is to write

clean code that works. I think that there is merit in both arguments,

although I lean towards the specification view, but I leave it for you to

decide.” [Scott Ambler]

• TDD = test-first design + refactoring [Ambler]

• “XP requires the buy-in of functional business groups outside of dev.

TDD is a piece of it we can take with us and apply without needing the

cooperation of anyone outside of the development team.” [John Roth]

UW CSE P503 David Notkin ● Spring 2009 26

Wikipedia sez

• “Test-driven development (TDD) is a software

development technique that uses short development

iterations based on pre-written test cases that define

desired improvements or new functions. Each

iteration produces code necessary to pass that

iteration's tests. Finally, the programmer or team

refactors the code to accommodate changes. A key

TDD concept is that preparing tests before coding

facilitates rapid feedback changes. Note that test-

driven development is a software design method, not

merely a method of testing.”

UW CSE P503 David Notkin ● Spring 2009 27

So, what’s the scoop?

• Fad? Real deal?

UW CSE P503 David Notkin ● Spring 2009 28

http://www.agiledata.org/

5/15/2009

8

Next Thursday

• Two choices

– Michael Jackson video on your own; a serious

one-page assessment

– Curriculum development on Thursday night in

groups

• Information on both goes out by email and on the

web site tomorrow

UW CSE P503 David Notkin ● Spring 2009 29

N-version programming

• Idea: mimic hardware reliability using redundancy

• Probability of a component failing is pi

• Given independent failures, the probability of the

whole system failing is the product of those failure

rates

• Why not try it in software?

UW CSE P503 David Notkin ● Spring 2009 30

n

i

ipP
1

Optional…

• One-minute paper: Key point? Open question? Mid-

course correction?

UW CSE P503 David Notkin ● Spring 2009 31 UW CSE P503 David Notkin ● Spring 2009 32

