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Abstract

In this paper we present our results and experiences of using

symbolic model checking to study the specification of an air-

craft collision avoidance system. Symbolic model checking

has been highly successful when applied to hardware sys-

tems. We are interested in the question of whether or not

model checking techniques can be applied to large software

specifications.

To investigate this, we translated a portion of the finite-

state requirements specification of TCAS II (Traffic Alert

and Collision Avoidance System) into a form accepted by

a model checker (SMV). We successfully used the model

checker to investigate a number of dynamic properties of

the system.

We report on our experiences, describing our approach

to translating the specification to the SMV language and

our methods for achieving acceptable performance in model

checking, and giving a summary of the properties that we

were able to check. We consider the paper as a data point

that provides reason for optimism about the potential for

successful application of model checking to software systems.

In addition, our experiences provide a basis for character-

izing features that would be especially suitable for model

checkers built specifically for analyzing software systems.

The intent of this paper is to evaluate symbolic model

checking of state-machine based specifications, not to eval-

uate the TCAS II specification. We used a preliminary ver-

sion of the specification, the version 6.00, dated March, 1993,

in our study. We did not have access to later versions, so

we do not know if the properties identified here are present

in later versions.

1 Introduction

Model checking, a technique for analyzing finite state spaces,

has been applied very successfully to a wide range of hard-

ware systems. It has been surmised that there are two se-
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rious impediments that make it difficult to effectively apply

modeling checking to software systems. The first possible

impediment is that the technique is limited to handling fi-

nite state machines, while software systems are generally

specified as infinite state machines. Jackson [15] and Wing

and Vaziri- Farahani [22] have addressed aspects of this con-

cern, showing some techniques for approximating infinite

state machines with finite state machines that can then be

used for model checking. The second possible impediment—

that hardware systems tend to possess certain properties,

such as regularity, that allow model checking to succeed,

while software systems may not exhibit similar properties—

is the one we address in this paper. Specifically, we provide

a data point by reporting on a positive experience in model

checking a large software system requirements specification.

Wit h progress being made on these two fronts, it appears

that applying model checking to software faces a brighter

future than previously conjectured.

In our particular experiment, we translated (Section 3) a

significant portion of a preliminary version of the TCAS II

(Traffic Alert and Collision Avoidance System) System Re-

quirements Specification [11] from the Requirements State

Machine Language (RSML) [17] into a form suitable for in-

put to the Symbolic Model Verifier (SMV) [18]. TCAS II

is an aircraft collision avoidance system required on com-

mercial aircraft wit h more than 30 seats, and was consid-

ered “the most complex system to be incorporated into the

avionics of commercial aircraft” [17. D. 6851. We were able to
L ,.,

generate an internal representation of the transition relation

of the system of an acceptable size so that we could test a

number of properties of the specification (Section 4). These

include a number of general robustness properties as well as

some safety properties specific to the domain (Section 5).

Our objective was to test the effectiveness of model check-

ing t ethnology on software systems, so our experiences in

applying model checking are more import ant than the in-
dividual results. We convey some of the obstacles we faced

and the techniques that we used to overcome these obsta-

cles to allow us to check formulae against the specification.

Other software systems that are often specified using finite

state machines — for example, telephony and communica-

tion systems, network and distributed system protocols, and

other reactive svstems — might well vield to similar anal-

yses. Based on” our experien~e, and is an additional step

towards making model checking of software specifications

more practical, we discuss some of the limitations of current

model checking technology and suggest directions for devel-

oping mOdel checkers better suited to software (Section 7).
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Figure 1: Model Checking a Specification

2 Model Checking

Model checking is the process of exploring a finite state space

to determine whether or not a property holds. Figure 1 is a

schematic of the process of model checking a specification,

with the specific representations that we used for the com-

ponents shown in parentheses. The specification is trans-

lated to an input for the model checker, possibly with some

simplifications. The input and the property that is being

tested are then converted to the internal representation of

the model checker. The representations are passed to the

model checking algorithm. The result is either a claim that

the property is true or else a counterexample (i.e. a sequence

of state transitions starting from some initiaJ state) show-

ing that the property is false. The result can be analyzed

by the software engineer to refine the model of the specifi-

cation, the property tested, or even the specification itself.

This iterative process is inherent in our work.

The major problem of model checking is that the state

spaces arising from practical problems are often huge, gener-

ally making exhaustive exploration infeasible. An important

advance in model checking was the introduction of symbolic

representations of state spaces, which allowed direct explo-

ration of the state space to be replaced by the manipulation

of data structures representing the transition relation of the

state space.

The transition relation can be represented ax a boolean

function. A data structure that has been developed to rep-

resent boolean functions is the Ordered Binary Decision Di-

agram (OBDD, or BDD for short) [5]. A BDD is a directed

acyclic graph that encodes the function based on a fixed or-

dering of the variables. (One way to view it is as a decision

tree with isomorphic sub-t rees identified.) The properties

that make BDDs useful in model checking include that they

give a unique representation of functions, they can be com-

bined efficiently, and there are rdgorithms that can manipu-

late BBDs to test logical relations. Several hardware model

checkers such as SMV, which we used in our study, have

been constructed using BDDs as their internal representa-

tion. These are successfully used for checking large circuits

in both commercial and academic settings. The key for these

checkers to work efficiently is that the BDD representation

remains small even when the state space being explored is

very large. This representation is frequently small although

sometimes its size depends critically on the ordering of the

variables.

Properties to be checked are usually expressed in a tem-

poral logic, such as Computation Tree Logic (CTL) [8],

which is used by SMV. CTL is a branching time temporal

logic, extending propositional logic with temporrd operators

that express how propositions change their truth values over

time. In this paper we will only use two temporal operators,

namely AG and AF. Each CTL formula is evaluated with

respect to some particular state. The formula AG p holds in

state s if p holds in all states along all computation paths

starting from s, and we call such a property an invariant.

The formula AF p holds if p holds in some state along all

computation pat hs starting from s. Therefore the formula

AG (p + AF q) is true in state s if along all computation

paths starting from s, whenever p is true, g will be true

in some successor state along the path. CTL formulae are

implicitly evaluated by SMV with respect to all the initial

stat es.

3 Translating RSM L Specifications into SMV pro-
grams

Before we could apply the BDD model checking algorithms

to the TCAS specification, we had to first translate the spec-

ification from RSML into a form accepted by a BDD based

model checker, such as SMV. We first briefly overview RSML

and SMV, laying the foundation for our description of the

translation.

3.1 RSML

RSML is a communicating state machine model similar to

St atecharts [12], including features such as parallel state ma-

chines (AN D decomposition) and hierarchical abstraction

into superstates. For the purposes of this paper, its most

important semantic differences with Statecharts are a more

restrictive interleaving (step) semantics and the separation

of each trigger into a single positive triggering event and

guarding conditions.

Figure 2 is an example of an RSML state machine. It

shows the state hierarchy and the transitions between the

states. There are three kinds of states in RSML: OR states,

in which exactly one substate is active at any given time (e.g.

M, whose substates are P and Q), AND states, in which all

the substates are executed in parallel (e.g. Q, whose sub-

states are R and S), and atomic states (e.g. P), which have

no substates. A substate of an AND state or an OR state
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Figure 2: An Example of an RSML state machine.

Transition(s): ❑ - ~

Location: M b Q b S

Trigger Event: z

Co;~ition:
OR.

Output Action: y

Figure 3: Transition from S1 to S2.

can be an AND state, an OR state or an atomic state. In

the figure, arrows without origins specify start states. For

example, when the machine enters state Q, it is in states U1

and S1.

A transition consists of a source state, a destination

stat e, a trigger event, and possibly a guarding condition

and/or an output action. A transition is taken when its

trigger event occurs and its guarding condition (if present)

is true, thus producing an output action. The output ac-

tion identifies an event that may trigger another transition

in the svst em. The auardirw conditions on a transition are. .
expressed in a tabular representation of disjunctive normal

form called AND/OR tables (see Figure 3.) The far-left col-

umn of the AND/OR table lists the logical phrases. Each

of the other columns is a conjunction of those phrases and

contains the logicaJ values of the expressions. The table

evaluates to true if one of its columns is true. A column

evaluates to true if all of its entries are true. A dot denotes

“don’t care.” When two or more transitions out of a state

are triggered simultaneously leading to different next states

or output actions, the state transition is nondet erministic.

Figure 3 shows a possible transition from S1 to S2. The

transition is taken exactly when trigger event x is generated

and the predicate specified by the AND/OR table is true.

Event z may be triggered by some other transition in the

system, or by the input interface as a result of receiving an

external message from the environment. In the AND/OR

table, t is a special variable in RSML that indicates the

current time, while t(entered(Q)) is a function that returns

the time when state Q was last entered. Therefore, the

AND/OR table specifies the predicate that either (column

1) state R is in U and Alt is greater than 1000 ft or (column

2) the machine entered state Q at least 5 seconds ago. Alt

can be an input variable or a function. If the transition is

taken, event y will be generated, possibly triggering other

transitions in the machine.

The cascading of events continues until no transitions

are generated. At this point, the system becomes stable. A

step is defined by the change in the system state from the

point at which the initial event was received until the point

when system becomes stable. Each interim stat e change in

a step is called a microstep. A maximal set of mutually

consist ent transitions enabled at the start of each microst ep

fires simultaneously within that microstep. A step (and thus

a microstep) is assumed to happen instantaneously. Once

a step is initiated, no external messages can arrive until

the system becomes stable. This assumption is called the

synchrony hypothesis [17].

3.2 SMV

SMV is a BDD-based tool for svmbolic model checkirm of

finite state systems against speci~cations written in the t~m-

poral logic CTL (see Section 2). It supports both determin-

istic and nondeterministic models, and provides for modu-

lar system descriptions. SMV cent ains boolean, scalar and

fixed array data types. Below we summarize only the SMV

features pertinent to our discussion.

An SMV program is divided into modules, each of which

specifies a finite state machine. A module cent ains variable

declarations to determine its state space and descriptions of

the initial state and transition relation of the machine, as

well as a list of CTL formulae to be checked. Variable dec-

larations are preceded by the keyword VAR. The preferred

method of describing the initial state is by a collection of

parallel assignments to various init ( oar) where var is a vari-

able. The expression next ( var) is used to refer to the vari-

able vcsr in the next state. The preferred method of de-

scribing the transition relation is by a collection of parallel

assignments to these next versions of the variables. The

init assignments are made simultaneously at the start and

the next assignments are simultaneously executed once per

step. The values for these assignments can be based on a

wide assortment of expressions. Assignments are preceded

by the keyword ASSIGN.

SMV has a macro-like facihtv for defining a svmbol to

represent an expression. In this case, a variab~e is not intro-

duced in the BDD representation of the system. In addition,

SMV also extends the semantics of the next operator to ap-

ply to any expression expr that does not cent ain next. That

is, next ( ezpr) gives the value of expression ezpr in the next

state. This is equivalent to replacing each variable var in

expr by next ( var). Symbols are defined after the keyword

DEFINE.

Two sources of nondeterminism in SMV are relevant to

us. An expression can be a set, and it nondeterministic ally

evaluates to a value from that set. In addition, when the

initial or the next state value of a variable is not defined,

SMV nondeterministically assigns it a value of its type.

SMV also has a somewhat more general but less robust

way to specify the initial state and transition relation us-

irm INIT and TRANS constructs. These can be arbitrarv.
propositional formulae involving the values of the variable:,

symbols, and their init and next versions. Alt bough we did

not use this feature in our translation of TCAS, it is use-

ful for translating some RSML specifications, as we describe

below.
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Figure 4: The state hierarchy drawn as a tree. The square nodes

represent AND states and atomic states, and the round nodes OR
states.

In SMV, 1 means true and O means false. The “and”,

“or” and “not” operators in SMV are &, I and ! respectively.

3.3 Translating RSML to SMV

In this section we present an overview of the general method-

ology we derived for translating RSML specifications into

SMV programs.

Hierarchical States One of the kevs to successful use of.
symbolic model checking is to represent objects efficiently.

In translating an ordinary finite state machine into SMV it is

most efficient to represent the current state of the machine

by a variable whose type is an enumerated set consisting

of the possible machine states. This has the advantage of

permitting the underlying BDD representation produced to

be a binary encoding of the state space.

We extend this idea to a state hierarchy with parallel

states in a natural way that preserves the alternation of the

hierarchy but flattens nested OR states and nested AND

states. More precisely, let V be the set consisting of the

root state, if it is an OR state, together with all OR states

in the hierarchy that are children of AND (parallel) states.

For each state A, let v(A) be its closest ancestor in V (if

A G V then o(A) = A.) Let A be the set consisting all

atomic states together with all AND states in the hierarchy

that are children of OR states.

We create one SMV variable for each element A c V. Its

type is an enumerated set consisting of all elements B G A
such that w(B) = A. Continuing our example from sec-

tion 3.1 and following Figure 4, we declare:

VAIt

M: {P, q>;

R: WI, U2, V];

s: {s1, S2, S3>;

The values of these variables completely determine which

states of the machine are current (because of the parallelism

there may more than one current state.) For each state B

we express whether or not state B is current by defining

SMV symbols according to the following rules:

inB := 1; if B is the root state,

inB := inA; if B is a child of AND state A,

inB := irul & (A =El); if Be Aandv(B)=ACV,

inB := inBl I inB2 I . . . I inBk; if B is an OR state

with children Bl, B2, . . . . Bk and B @ V.

So for our state hierarchy, we have:

DEFI?iE

inM := 1;

inP :=inM&(M= P); inq :=inM& (M= Q);

inR : = inCl; inS : = inq;

inU := inUl I inU2;

inUl := inR % (R = Ul); inU2 := inR & (R = u2);

inV :=inR& (R= V);

inS 1 := inS t% (S = S1); inS2 := inS & (S = S2);

inS3 := inS & (S = S3);

Events, Input Variables, and the Synchrony Hypothesis
Each RSML event x is represented by a boolean variable

x. RSML input variables are translated directly as SMV

variables. If the RSML input variable has an enumerated

type or is an integer with a specified range, the translation

is straightforward. If the RSML input variable is an integer

and its range is not explicit, we set the range of the SMV

variable to be sufficiently large to encompass the constants

with which it and its functions are compared in the specifi-

cation.

To model an unpredictable environment wea.llow SMV

tonondeterministically assign values to the input variables.

Of course there may be certain assumptions on changesin

inputs that are necessary for the correct behavior of thesys-

tem. If the assumptions are known, wecanmodel thereby

specifying how the input variables change values. However,

allowing SMV tonondeterministically set the variables en-

ablesus toexamine theeffects of violating these assumptions

on properties of the system.

We simulate each microstep of RSML by a step in SMV.

Therefore, to maintain the synchrony hypothesis of RSML

wehave to restrict the environment to change only when the

system is stable. So, we define a symbol Stable, which is a

conjunction of the negation ofallthevariables that represent

events, and use it to guard all changes in input variables.

For example, assumingx, yand zarethe only eventsin

the system we define:

DEFINE

Stable := !X & !y & !Z;

and, assuming that event x is generated by the environment,

we assign:

ASSIGN

next (x) :=

case

Stable: 10,13;

1: o;
esac;

In a case expression, the expression before a colon, e.g.

Stable, serves as a guarding condition. If the guard evalu-

ates to 1 (true), the case expression evaluates to the value

of the expression after the colon, e.g. {0,1} (which in turn

evaluates to O or 1 nondeterministically). The guards are

considered in order. So the assignment specifies that x may

be generated (set to 1) only if the system is stable in the
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current state. Since all transitions taken that are triggered

by an event (either interred or from the environment) occur

in a single RSML microstep, events remain 1 for only one

SMV step.

Timing constraints Recall that in Figure 3thereis atiming

constraint t ~ t(entered(Q)) + 5 see, which is equivalent to

t–t(entered(Q)) >5 sec. Inorder tomodel this constraint,

we need the difference between the current time and the

time when state Q was last entered. To avoid storing a

potentially unbounded value for this difference, we create a

variable Time-S inceJSntered-!J to implement a timer:

ASSIGN

next(Time_Since_Entered.Q) :=

case

!inQ k next(inQ) : O;

Stable & Time_Since-Entered_Q < 5 :

Time_Since_Entered_Q + 1;

1: Time_Since_Entered_Q;

esac;

The assignment says that (case 1) if the machine enters state

Q, reset the timer, (case 2) if the machine is stable and the

timer is less than 5 seconds, advance the timer and (case

3) otherwise, the timer remains unchanged. Limiting the

domains oftimers in this wayiscritical forthe efficiency of

the SMV translation.

Notice that this implementation assumes that arrivals

of inputs are separated by multiples of one second. This

assumption also happens to be true in TCAS. If the time

granularity is different, we can simply scale the constants

accordingly, assuming that time is discrete.

Transitions Atransition in RSMListakenifand onlyif(l)

the machine isin the source state of the transition, (2) the

trigger event occurs, and (3) the guarding condition specified

bythe AND/OR table is satisfied. Wedefinean SMVsym-

bol for each transition. It is assigned a boolean expression,

which is a logical conjunction of the above three conditions.

Forthe transition in Figure 3 we define:

DEFINE

T-Sl_S2 :=

inS 1 -- source sta$e

&x -– trigger event

& ( (i.nU& Alt > 1000) -- guards (CO1 1)

I TimeJiince_Entered_Q >= 5); -- (CO1 2)

(Commentsin SMV start with “--”.) For the most part,

the translation of theguards proceeds directly asin the first

guard for this example inwhichinUis defined as above and

Altiseither an SMV variable ordefined symbol whose value

is compared to the constant 1000. TimeSince-EnteredJJ is

a timer discussed above.

Tomodel thestate change for Sjwe have an assignment:

ASSIGN

next(S) :=

case

T_S2_Sl I T_S3_Sl : S1;

T-S1-S2 I T-S3-S2 : S2;

T_Sl_S3 I T_S2_S3 : S3;

!inS & next(inS) : S1; -- start state

1 : s;

esac;

where T-S2-S1, T-S3_Sl, etc. would be defined similarly to

T.S1S2. Notice that the fourth line in the case expression

specifies that the start state of S is S1.

Observe that if multiple transitions out of a single state,

such as T-Sl_S2 and T.S133, are enabled simultaneously

(they have the simultaneously fired trigger events and si-

multaneously satisfiable guarding conditions), then, since

SMV always evaluates the conditions in a case expression

in order, this specifies a deterministic transition in SMV

whereas it specifies a nondeterministic transition in RSML.

Jaffeet.al. [16] argue that such nondeterministic transitions

are usually design flaws in the specification and should be

avoided. In Section 5.1 we will describe how to detect un-

desired nondeterminism in this deterministically modeled

specification.

Given these deterministic transitions, output actions (i.e.,

events) are modeled simply as a logical disjunction of the

transitions that generate them. For example:

ASSIGN

next (y) := T_Sl_S2 I T_Ul_U2;

assuming that the transitions from S1 to S2 and from U1 to

U2arethe only transitions that trigger event g.

Intentionally Nondeterministic Transitions Nondetermin-

istic transitions between different states, such as would be

the case if T-Sl_S2and T-Sl_S3 could be simultaneously en-

abled, are nearly as easy to model in SMV. In this case

thevaluesof S andnext(S) can beusedto determine which

transition has been taken. For example, wecan insert before

the first line in the case expression above:

T_Si_S2 & T_SlJS3 : {S2,S3};

The condition states that if the two transitions are enabled

simultaneously, the machine will go to S2 or S3 nondeter-

ministically. To generate the correct value for next(y) we

merely need to replace the disjunct T-S1-S2:

ASSIGN

next (y) := (T_ S1-S2 % next(inS2)) I T-UI-U2;

This method is convenient when the number of nondeter-

ministic options out a single state is small (the most likely

reasonable case) but k such options would entail 2k –k–l

additional cases.

A potentially more concise but somewhat more cumber-

some translation for this situation, using the TRANS state-

ment of SMV as opposed to the ASSIGN statements used

above, can be given as follows:

( (T_ Si_S2&next(inS2) knext(y) = i) I

(T-Sl_S3k next(inS3) & . . ) I

(T_ S2_Si k next(insl) & . . ) I

(!T_Sl_S2& !T_S2_S3& !T_S2_Sl &next(S)=S))

& (!(T-Sl_S2& next(inS2))

& !T_Ul_U2 & next(y) = 0 )

The default case for state S would reincluded in all transi-

tions that enter state Q.

In the unlikely case that a reasonable design includes

parallel transitions between the same two states that can be

triggered by simultaneously fired triggering events and have

simultaneously satisfiable guarding conditions but generate

different output actions, it isnecessary toenlargethe SMV

variable space by including a variable to record which of
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the parallel transitions will be taken. Corbett [9, p. 178]

gives details ofasimilar translation, although his translation

would use similar variables for all states, not just those with

parallel transitions.

Miscellaneous Our example does not contain all RSML

constructs, such as PFUZV( ), constants, macros, functions,

statechart arrays, and transition buses. Roughly, Pwv(e)

returns the previous value of expression e. Modeling PREV()

requires introducing an auxiliary variable to “remember” the

variable’s previous state. Constants can be trivially imple-

mented with SMV defined symbols, which do not add vari-

ables to the BDD representations. Macros and functions

without arguments can be modeled similarly. Macros and

functions with arguments are somewhat trickier; they can

be implemented as SMV modules that are instantiated at

each call site. Statechart arrays can be implemented as an

array of modules. The translation of transition buses is no

different from that of ordinary transitions.

Comparison with Statecharts In contrast to RSML step

semantics, Statechart step semantics (as defined by Pnueli

and Shalev [19]) build a set T of transitions that will fire

in a step by iteratively computing a closure based on the

enabled transitions at the start of the step. Only after the

closure is computed do the transitions fire. This appears to

be less efficient to model in SMV since one would seem to

need an extra boolean variable for each transition in order

to record whether or not it is in the set T computed during

each step.

4 Obstacles to Model Checking TCAS II with SMV

After we derived the translation rules in the previous section,

we had to overcome a number of obstacles to make model

checking the TCAS II specification feasible.

4.1 TCAS II

TCAS II is an airborne collision avoidance system required

on most commercial aircraft. The TCAS-equipped aircraft

is surrounded by a protected volume of airspace. When an-

other aircraft intrudes into this volume, TCAS II generates

warnings (traffic advisories) and possibly escape maneuvers

(resolution advisories) in the vertical direction to the pilot

to avoid collision. Examples of resolution advisories (RAs)

include Climb, Descend, Increase-Climb (“increase the cur-

rent climb rate” ), Increase-Descend, Climb-VSLO ( “do not

descend” ), Climb-VSL500 ( “do not descend more than 500

ft/min” ), etc.

The specification of TCAS II, a 400 page document, was

writ ten in RSM L. The first obstacle to analyzing the speci-

fication was its sheer size. As a first attempt we decided to

try to model check a portion of it, namely a state machine

called Own-Aircraft, which occupies about 3070 of the spec-

ification. Own-Aircraft has close interactions with another

part of TCAS called Other-Aircraft, which tracks the state

of other aircraft in the vicinity and possibly generates RAs.

Up to 30 other aircraft can be tracked. From the RAs given

by all the instances of Other-Aircraft, Own-Aircraft derives

a composite RA and generates visual and audio outputs to

the pilot. Figure 5 shows the state Composite-RA, one of

the twelve parallel substates of Own-Aircraft.

Composite-RA

r P
II

( JI

Figure 5: Composite-RA in Own-Aircraft

We treated Other-Aircraft as part of the environment of

Own-Aircraft. That is, we created variables for any states

of Other-Aircraft that are referenced within Own-Aircraft.

Like environment variables, their values were nondetermin-

istic, except that we restricted when these variables could

change to ensure correct synchronization. We focused on

resolution maneuvers with one intruder aircraft and thus

modeled only one inst ante of Other-Aircraft.

4.2 BDI)s

We knew a priori that there is no efficient BDD representa-

tion for multiplication and division under any variable or-

dering [3, 20] so we realized that we needed to avoid them.

Two functions in Own-Aircraft do involve multiplication and

division of values for measured altitudes and altitude rates.

These are measurements of input variables that we already

modeled nondeterministically. So we made the conserva-

tive simplification to treat the calculated values as nonde-

terministic themselves. (We also eliminated from our model

several input variables that are only referenced by the two

functions.) These simplifications did not cause problems for

the properties that we checked and report in Section 5.

4.3 SMV’

The performance of BDD-based algorithms is directly re-

lated to the size of the BDDs. Some of our early attempts at

checking generated enormous BDDs: at one point the BDDs

consumed 200 MB of physical memory, and other runs were

terminated before the BDD was constructed. Our attempts

to check formulae with the large BDDs were generally un-

successful or too slow (our initial success in identifying non-

determinism was an overnight run, although we can now find

the nondeterminism in a few minutes).

The size of the BDDs can be reduced by dynamic vari-

able reordering and conjunctive partitioning [6], which are

supported by SMV. These techniques dramatically improved

the performance of checking some formulae; however, they

did not solve all the problems. The BDD size was very sensi-

tive to the ranges of the variables representing altitudes and

1This section refers to SMV Release 2.4.4 which was the most
recent version to which we had access.
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Properties Result Time No. of BDD Memory

(sec.) Nodes Allocated (MB)

Building the Transition Relation N/A 46.6 124618 7.1

Transition Consistency False 387.0 717275 16.4

Function Consistency False 289.5 387167 11.5

Step Termination True 57.2 142937 7.4

Descend Inhibition True 166.8 429983 11.8

Increase-Descend Inhibition False 193.7 282694 9.9

Output Agreement False 325.6 376716 11.6

Table 1: Resources used toanalyze the properties. Theresult colmnnindicates whether theproperty wastrne. The(user+ system)
time, the nnmberof BDD nodes andthememory allocated were reported by SMV. These include the resources used to construct the
trmsition relation, evaluate the fomdaand fidacounterexmple (ifthefomula was evaluated false). The first row in the table tells
the resources used just to build the transition relation. The experiments were perforrnedon a lightly loaded Sun SPARCstation 10
running SnnOS 4.1.3 with 128 MB of main memory.

altitude rates. Take altitudes for an example. The specifica-

tion states that some altitude variables have granularity as

fine as “1 to 10 feet.” Theranges ofsome altitude variables

are not specified, but they are compared to constants whose

values range from 400 feet to 30500 feet. Therefore at least

13 to 15 bits are needed to represent altitudes. However,

we found that with these values we could not get the model

checker to build the BDDs in a reasonable amount of time.

Initially we got around the problem by redefining the

constants so that they fitted in a small range, for example,

from O to 15 for altitudes and -4 to 3 for altitude rates.

(Increasing the numbers by one bit sometimes exploded the

checking time from ten minutes to more than ten hours.)

Although we were able to build the BDDs in this way and

check some formulae, this ad hoc solution was unsatisfac-

tory in many ways. An obvious drawback is that because

of the small ranges, some distinct constants in the specifica-

tion became identical after the mapping (for example, both

400 feet and 1000 feet might become 1). This caused some

formulae that are false for the specification to evaluate to

true for the model.

We could not leave the results of addition and compari-

son nondeterministic as we did with multiplication and di-

vision in Section 4.2, because addition and comparison are

essential to the logic of Own-Aircraft. For example, any De-

scend RA is prohibited when the difference between the cur-

rent altitude of the own aircraft and the estimated ground

level altitude is less than some threshold. If the subtraction

or the comparison were modeled nondeterministically, this

safety requirement would be violated trivially.

We eventually realized that the problem with the ranges

was due to the variable ordering for the BDDs that SMV

was using to represent integer addition and comparison. The

BDD for any bit of the sum of the integers X = Z1Z2 . . . zn

and Y = yl yz . . . y~ has size O(n) if the variables are in the

order xl, VI, X2, w,. . . . z~, yn but requires exponential size if

the variables are in the order z1, x2, . . . z~, yI, . . . ,y~. SMV

does not interleave the bits among the variables it is repre-

senting when constructing the BDDs. Therefore, although

comparison and addition have concise BDD representations,

SMV produces exponential size BDDs for them.

We considered two ways of att aching this problem, namely

changing the internals of SMV to interleave the bits, or doing

addition and comparison at the source code level. Although

in principle the former may be a better long term solution,

the latter method seemed a simpler approach and we were

able to use it with great success. We wrote some simple awk

scripts for preprocessing the SMV program to allow param-

et erized macro expansion, loop unrolling, etc. Using these

facilities, we implemented efficient addition and comparison

in the SMV program and manipulated all the integer vari-

ables and constants at the bit level. We can now model the

altitudes and altitude rates with the precision required by

the specification.

Another performance problem was that generating a coun-

terexample often took hours even though the formula was

determined false within minutes. Evaluating the formula

and finding a counterexample (in case the formula was false)

were done by the model checker as two separate searches in

the reachability graph. For example, to check for an invari-

ant property with the formula AG p (i.e. p is true in all the

reachable states), the model checker started from the set of

“bad” states (in which p is false), and searched the set of

states that could reach the “bad” states by iteratively apply-

ing the backward transition relation. If this set contained

any initial state, the model checker would determine the

formula false and start a second, forward search from such

an initial state to find a counterexample. We have modi-

fied the model checker by storing certain state information

during the first search, eliminating most of the work in the

second search. As a result, once a formula representing an

invariant property is evaluated false, a counterexample can

now be found almost instantly.

5 Results of Model Checking TCAS II

Once we overcame these obstacles, we were ready to do some

analysis of the specification using the model checker. The

properties that we analyzed include general properties that

should hold in most RSML specifications (Sections 5.1, 5.2,

5.3 and Section 5.6) and domain-specific properties (Sec-

tions 5.4 and 5.5).

Table 1 reports the resources needed to analyze the prop-

erties. The BDD representation of the SMV program has

227 boolean variables, 10 of which are for events, 36 for the

states of Own-Aircraft, 19 for the states of Other-Aircraft,

134 for altitude and altitude rates, 22 for inputs other than

altitude and altitude rates, and 6 for other purposes. The

size of the state space is about 1.4 x 1065. The size of the

reachable state spacez is at least 9.6 x 105s.

2We obtained this lower bound by executing SMV with the com-

162



Displayed-Model-Goal =

o it’ Composite-ttA not in state k’osltlve

Max(Own-Track-AIt-Rate, if (New-Climb or New-Threat) and
Prev(Displayed-Model-Goal), not New-Increase-Climb and
1500 ft/min) not (increase-Climb-Cancelled or

Increase-Descend-Cancelled) and
Composite-RA in state Climb

Min(Own-Track-Alt-Rate, if (New-Descend or New-Threat) and
Prev(Displayed-Model- Goal), not New-Increase-Descend and
– 1500 ft/min) not (Increase-Climb-Cancelled or

increase-Descend-Cancelled) and
Composite-RA in state Descend

/* case 1 ‘/

/’ case 2 “/

/* case 3 ‘/

2500 ft/min if New-Increase-Climb

–2500 ft/min if New-increase-Descend

Max(Own-Track-Alt-Rate, if Increase-Climb-Cancelled and
1500 ft/min) not New-increase-Climb and

Composite-RA in state Positive

Min(Own-Track-Alt-Rate, if Increase-Descend-Cancelled and
-1500 ft/min) not New-Increase-Descend and

Composite-RA in state Positive

Prev(Displayed-Model-Goal) Otherwise

/“ case 4 */

/’ case 5 “/

/“ case 6 “/

/“ case 7 “j

/“ case 8 */

Fismre 6: Definition of Disdaved-Model- Goal in the TCAS specification. Most of the identifiers are RSML macros or abbreviations,.
the definitions of which are ~mhted here due to limited space. -(Their truth values depend on Composite-RA aud Other-Aircraft.)

5.1 Transition Consistency

There are known nondeterministic transitions in earlier ver-

sions of the TCAS specification. So, our first attempt was

to find such transitions in one of these versions with the

model checker. (For the other properties that we checked,

we worked with a later draft TCAS specification [11], in

which there is no unintentional nondeterminism. ) These

nondeterministic transitions had previously been identified

by Heimdahl and Leveson [13] using a different technique.

We were interested in checking these properties to verify

that model checking could match previous results. In Sec-

tion 6 we will summarize the differences between our model

checking approach and the technique used by Heimdahl and

Leveson.

In our example in Figure 2, there are possible nondeter-

ministic transitions from state S. For example, the t ransi-

tions from S1 to S2 and from S1 to S3 would be enabled

at the same time if their trigger events were the same and

their guarding conditions were simultaneously satisfied. We

can check this with the model checker by the following CTL

formula:

AG ! (T_Sl_S2 & T-SI-S3)

Recall that T-SI-S2 is true when the transition from S1 to

S2 is enabled; similarly for T.S l_s3. So the CTL formula

specifies that the two transitions are never enabled simulta-

neously. Applying this technique to all the states, the model

checker was able to find the nondeterministic transitions in

that version of the specification.

mand line option -f but without running it to completion. This option
forces SMV to find the reachable state space before evaluating any
formula.

5.2 Function Consistency

Displayed-Model-Goal, shown in Figure 6, is a function whose

value is displayed to the pilot. It represents the optimal alti-

tude rate at which the pilot should aim (a positive value indi-

cates the upward direction). The function definition consists

of eight cases, which are supposed to be mutually exclusive.

It is not obvious whether this is the case since the mutual

exclusion depends on logic elsewhere in the specification.

Checklug for mutual exclusion of the cases is similar to

checking for nondeterminism. We defined a boolean symbol

Case-1 for the first Case, and Gase-2 for the second case,

and so on, and checked an CTL formula of the form:

AG ! ( (Case-l & Ca~e-2) I (Case-1 & Ca~e-3) I

. . . I (Case-6 k Case-7))

The model checker found a counterexample showing that the

formula was false. After carefully examining the counterex-

ample, we decided that the scenario was due to the oversim-

plified model of Other-Aircraft, which we had considered as

a part of the nondet erministic environment. In the coun-

terexample, Other-Aircraft reverses from an Increase-Climb

RA to an Increase-Descend RA in one step, which is prohib-

ited by the logic in the specification. After we changed the

code to prevent Other-Aircraft from making such spurious

transitions, no counterexamples were found.

5.3 Step Termination

A step in an RSML state machine may not terminate if the

machine contains a cycle of events under the transition rela-

tion. However, usually the events in an RSML specification,

such as the TCAS specification, form a partial ordering un-

der the transition relation, so it is easy to see that the state

machine will always terminate. Alternatively, in our frame-

work we can check for termination with the CTL formula:
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AG (!Stable -> AF Stable)

which states that whenever the state machine is not stable,

it will always become stable eventually. This formula was

evaluated true for our model of the TCAS specification, as

expected.

5.4 Inhibition of Resolution Advisories

A TCAS document [10] states that (1) all Descend RAs

are inhibit ed when the own aircraft is below 1000 feet above

ground level, and (2) all Increase-Descend RAs are inhibited

below 1450 feet above ground level. The logic that guaran-

tees these safety properties resides in both Own-Aircraft and

Other-Aircraft. We imposed the necessary constraints on

the transitions of Other-Aircraft in order to check whether

the part of the logic in Own-Aircraft is correct. The model

checker found that while the first property is satisfied, the

second is not. The formula that we checked for the second

property was similar to the following:3

AG ((Radio-Altimeter-Status = Valid

& Own-Alt-Radi.o <= 1450)
-> !Increa~e-Descend)

where Own-Alt -Radiois aninput representing the altitudeof

the own aircraft above ground level, Radio-Altimeter-Status

an input indicating whether Own-Alt-Radio is valid, and

Increase-Descend an expression evaluating to true when

an Increase-Descend RA is issued. The counterexample it

gave revealed a typographical error in a guarding condition

in the specification (> instead of <).4 The effect of the er-

ror was that the Increase- Descend RA was inhibited for only

one step, thus allowing the safety property to be violated.

5.5 Output Agreement

In addition to the value of Displayed-Model-Goal, the state

of Composite-RA in Figure 5 is also shown to the pilot.

Therefore it seems safety-critical that Composite-RA and

Displayed-Model-Goal agree with each other. We checked

for several such properties. For example, one would expect

that if Composite-RA is in state Climb, then Displayed-

Model-Goal should be at least 1500 ft/min. However, the

model checker revealed that this is not true. In fact, it

showed that when Composite-RA is Climb, Displayed-Model-

Goal could be negative. The CTL formula we checked was

roughly:

AG (Composi.te-RA = Climb ->

Displayed-Model-Goal >= 1500)

The counterexample given by the model checker was a three

step scenario:

1.

2.

At time tO, there is an intruder aircraft and Other-

Aircraft gives a Descend RA. As a result, Composite-

RA is in state Descend and by case 3 of the definition

of Displayed-Model-Goal, it is < — 1500 ft/min.

At time tI > tO, Other-Aircraft realizes that an in-

crease in descend rate is necessary and issues an Increase-

Descend RA, which puts Displayed-Model-Goal at –2500

ft/min by case 5.

3.

5.6

At time tl+l, the situation has changed andOther-

Aircraft projects that a climb would result in greater

separation from the intruder. So it reverses its RA to

Climb, making Composite-RA enter state Climb, At

that point, case 7 applies and Displayed-Model-Goal

becomes < – 1500 ft /rein, resulting in contradictory

out put s.

References to Uninitialized Values

It is possible for an AND/OR table or function to refer to

the previous value of some variable (e.g., an input variable,

state, or function reference) even though the variable was

not yet defined in the previous step. In such a case the

value of PREV() is undefined. The model checker handles

such undefined references in the same way that it handles

environment variables. That is, it nondet erministically as-

signs values in an attempt to find a counterexample to the

formula. So while analyzing for the properties mentioned

above, the model checker also discovered situations in which

a variable is referenced before it is defined, e.g., referring to

Prmv() in the first step.

5.7 Discussion

As shown infection 5.2, the model checker sometimes found

incorrect counterexamples due to the simplifications of the

system that we made. It may seem that the repeated process

of getting an incorrect counterexample and eliminating it is

an undesirable artifact of the incomplete translation of the

specification. There are several reasons why leaving part of

the model nondeterministic is in fact a useful technique:

●

●

●

A specification may be so complex that model checking

it in its entirety is infeasible. This approach, then, al-

lows model checking to be beneficially applied toparts

of the specifications without fully considering all the

remaining components.

A software engineer canuse the information obtained

from analyzing the counterexamples to clarify the re-

lationship between parts of the specification, in par-

ticular between those parts that are fully modeled and

those that are partially modeled.

Development and analysis of the specification can be

interleaved so that potentiaJ probiems can be found

or avoided earlier. For example, when developing the

TCAS specification, an engineer could have specified

Own-Aircraft first and have left Other-Aircraft nonde-

terministic. Then ananalyst could have model checked

Own-Aircraft and discovered the assumptions on the

behaviors of Other-Aircraft that are necessary for Own-

Aircraft’s correct operations. This information then

could have been used to develop Other-Aircraft, which

could be model checked later to see whether the as-
sumptions hold.

This iterative approach appears to have benefits for anal-

ysis and shows potential for iterative development of speci-

fications, as well.

3The actual formulae differ slightly due to some implementation
details.

4The authors had discovered the typographical error by observa-
tion during the translation process.
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6 Related Work

Sreemani and Atlee [21], in work independent of ours, an-

alyzed the A-7E aircraft software requirement specification

wit h SMV. and were also able to successfully check several

temporal properties. While their motivations were similar,

our studies differ in several ways because of differences in the

specifications. The A- 7E aircraft requirements were written

in the Software Cost Reduction (SCR) requirements nota-,-
tion [1, 14], which does not cent a~n features such as hierar-

chical states and does not make assumptions like the syn-

chrony hypothesis. In addition, the environment of the A-

7E specification is abstracted as a set of predicates, whereas

the inrmts to our svstem include numerical values. Numer-

ical c~culation an~ comparison are abundant in the TCAS

specification, and they int reduce significant problems in the

model checking process.

There are a number of other widely researched approaches

to handling the state space explosion problem. Corbett re-

cently classified these techniques into several categories [9].

In contrast to our work, which studies a single data point

for a single approach, Corbett compared three approaches,

model checking, partial order space state reduction, and in-

equality necessary conditions, all in the context of detecting

deadlock in Ada tasking programs. For deadlock, Corbett

observed that “no technique was clearly superior to the oth-

ers, but rather each excelled on certain kinds of programs [9,

p. 179].”

The two translations into SMV that Corbett used differ

from ours. One translation represented asynchrony by arbi-

trary sequential interleavings of transitions, eliminating the

Parallelism that we exrdoit. The other translation, which he

~ound less successful, ~epresented asynchrony in parallel us-

ing extra variables to indicate which transition was executed

in each state machine whereas our translation only requires

extra variables where parallel nondeterministic transitions

occur between the same two states. Use of our translation

may have changed the outcome of Corbett’s comparison, but

further work is needed to determine which approaches are

most effective for checking particular properties on certain

classes of systems.

Heimdahl and Leveson [13] took a different approach.

They analyzed the TCAS specification without exploring the

state space. They deduced global properties of the system

by composing results of local analysis. Their technique differ

from ours in two ways.

First, the properties that we checked were different. Their

concerns were transition consistency and completeness [16],

which are domain-independent robustness properties. In

Section 5.1 we discussed how we checked for a source of

transition inconsistency. (They also discussed other sources

of transition inconsistence. which we have not addressed. )

Completeness intuitively “means that a response is specified

for every input; more specifically, it means that the disjunc-

tion of the guarding conditions of all the transitions with

the same triggering event from a particular state form a

tautology. In principle this can also be checked in our frame-

work similar to the way consistency is checked. In general,

our approach permits analysis of properties that can be ex-

pressed as CTL formulae, and is therefore capable of check-

ing domain-specific properties as well (Sections 5.4 and 5.5).

Second, their tool is more efficient for checking transition

consistency and completeness. On the other hand, it some-
times produced many spurious errors due to the predicates

involving arithmetics in the AND/OR tables, because the

predicates were modeled as independent boolean variables.

To eliminate the spurious reports they would have to find

out the relationships among the predicates. In contrast, we

modeled the numbers directly in the BDDs and interleaved

their bits in the binary representation to improve perfor-

mance. In this way, we were able to handle addition and

subtraction. Because we explore the reachable state space

we generate fewer spurious errors.

7 Conclusions

We have shown that it is feasible to translate part of a large

finite state specification into a form suitable for a model

checker, and have been able to check several non-trivial

properties. Our approach to analyzing the specification iter-

atively, by modeling some components nondeterministically

and then refining them, proved to be quite powerful. These

are critical steps towards realizing symbolic model check-

ing as an effective tool in the process of analyzing software

specifications.

What else is needed to make model checking as ubiqui-

tous for software systems as it is already for hardware sys-

tems? This is hard to predict with certainty, but a number

of directions seem especially promising.

First, Bryant and Chen [4] introduced the BMD (Bi-

nary Moment Diagram), a data structure that, in contrast

to BDD’s, can be used to represent multiplication concisely.

With a variant of this data structure, the *BMD, they were

able to verify division circuits. A hybrid approach where

BMD’s are used to represent arithmetic variables and BDD’s

are used to represent control variables, as suggested by Clarke

and Zhao [7], may be attractive. Building model checkers

that can handle arbitrarily complicated numeric calculations

is almost certainly intractable. However, rudimentary arith-

metic, coupled with an understanding of the appropriate no-

tions of approximation, might be sufficient to handle many

applications.

Second, automating the translation from RSML to input

for SMV (or another model checker) armears to be straixht-

forward. it might be reasonable to de~~lop a model che~ker

that directly accepts languages such as RSML or State-

charts, eliminating the need for any source-level transla-

tion at all. This is a good example of a place where model

checkers developed specifically for software might have some

leverage, since the way in which engineers define the state

machines often seems to differ between hardware and soft-

ware.

Third, it might be possible to exploit the general struc-

ture of the derived transition relation to improve perfor-

mance. (Although we only showed how to translate the

TCAS specification, we believe that this is a generalizable

approach. ) Our SMV description of an RSML specification

had variables to represent the state space, time, environ-

ment, and internal events. Although we t rested these uni-

formly in our translation to SMV, they were used in different

ways. It is possible that a model checker that incorporated

some of the semantics of time into the internal algorithms

could outperform a checker that handled time with ordinary

numeric variables. More generally, by exploiting common

properties of software specifications that represent process

control systems like TCAS, one might be able to build model

checkers that perform better and are easier to use.
We believe that this investigation contributes to an in-

crease in optimism that symbolic model checking can over-
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come predicted impediments and thus be successful in the

analysis of realistic software specifications.
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