
J-1

CSE584: Software Engineering
Lecture 9: Tools & Analysis (B)

David Notkin
Computer Science & Engineering

University of Washington
http://www.cs.washington.edu/education/courses/584/

Lackwit (O’Callahan & Jackson)

• Code-oriented tool that exploits type
inference

• Answers queries about C programs
– e.g., “locate all potential assignments to

this field”
– Accounts for aliasing, calls through

function pointers, type casts

• Efficient
– e.g., answers queries about a Linux kernel

(157KLOC) in under 10 minutes on a PC

Placement

• Lexical tools are very general, but are often
imprecise because they have no knowledge
of the underlying programming language

• Syntactic tools have some knowledge of the
language, are harder to implement, but can
give more precise answers

• Semantic tools have deeper knowledge of the
language, but generally don’t scale, don’t
work on real languages and are hard to
implement

Lackwit

• Semantic
• Scalable
• Real language (C)
• Static
• Can work on

incomplete
programs
– Make assumptions

about missing
code, or supply
stubs

•Sample queries
–Which integer variables contain file
handles?
–Can pointer foo in function bar be
passed to free()? If so, what paths
in the call graph are involved?
–Field f of variable v has an incorrect
value; where in the source might it
have changed?
–Which functions modify the cur_veh
field of map_manager_global?

Lackwit analysis

• Approximate (may return false
positives)

• Conservative (may not return false
negatives) under some conditions
– C’s type system has holes
– Lackwit makes assumptions similar to

those made by programmers (e.g., “no
out-of-bounds memory accesses”)

– Lackwit is unsound only for programs that
don’t satisfy these assumptions

Query commonalities

• There are a huge number of names for
storage locations
– local and global variables; procedure parameters;

for records, etc., the sub-components

• Values flow from location to location, which
can be associated with many different names

• Archetypal query: Which other names
identify locations to which a value could flow
to or from a location with this given name?
– Answers can be given textually or graphically

J-2

An example
• Query about the

cur_veh field of
map_manager_global

• Shaded ovals are
functions extracting
fields from the global

• Unshaded ovals pass
pointers to the
structure but don’t
manipulate it

• Edges between ovals
are calls

• Rectangles are
globals

• Edges to rectangles
are variable accesses

Claim

• This graph shows which functions
would have to be checked when
changing the invariants of the current
vehicle object
– Requires semantics, since many of the

relationships are induced by aliasing over
pointers

Underlying technique

• Use type inference, allowing type
information to be exploited to reduce
information about values flowing to
locations (and thus names)

• But what to do in programming
languages without rich type systems?

Trivial example

• DollarAmt
getSalary(EmployeeNum e)

• Relatively standard
declaration

• Allows us to determine
that there is no way for
the value of e to flow to
the result of the function
– Because they have

different types

• int
getSalary(int e)

• Another, perhaps more
common, way to declare
the same function

• This doesn’t allow the
direct inference that e’s
value doesn’t flow to the
function return
– Because they have the

same type
• Demands type inference

mechanism for
precision

Lackwit’s type system

• Lackwit ignores the C type declarations
• Computes new types in a richer type system

char* strcpy(char* dest,char* source)

(numα refβ, num α refγ) →φ num α refβ

Implies
–Result may be aliased with dest (flow between pointers)

–Values may flow between the characters of the parameters
–No flow between source and dest arguments (no aliasing)

Incomplete type information

void* return1st(void* x,void* y)
{
 return x; }

(a refβ, b) →φ a refβ

• The type variable a indicates that the type of
the contents of the pointer x is unconstrained
– But it must be the same as the type of the contents

of pointer y

• Increases the set of queries that Lackwit can
answer with precision

J-3

Polymorphism

• char* ptr1;
struct timeval* ptr2;
char** ptr3;
…
return1st(ptr1,ptr2); return1st(ptr2,ptr3)

• Both calls match the previous function
declaration

• This is solved (basically) by giving return1st
a richer type and instantiating it at every call
site
– (c refβ, d) →δ c refβ

– (e refα, f) →χ e refα

Type stuff

• Modified form of Hindley-Milner
algorithm “W”

• Efforts made to handle
– Mutable types
– Recursive types
– Null pointers
– Uninitialized data
– Type casts
– Declaration order

*from1 is not
compatible with
either *from2 or
*to2

But it is with
copy:*from,
copy:*to,
copy5:*from +
copy5:*to

Morphin case study

• Robot control program of about 17KLOC
• Vehicle object contains two queue objects

– Client was investigating combining these two
queues into one

• Queried each queue object to discover
operations performed and their contexts

• The two graphs each contained 171 nodes
– But each graph had only five nodes highlighted as

“accessor” nodes

Example

• These five matches helped identify
code to be changed

• grep would have returned false
matches and missed matches when
parameters were passed to functions

• Context-sensitivity needed to
distinguish the two queue onjects
– Because both are passed as arguments to

the same queue functions

Recap

• Helps find relationships among
variables in a C program
– Exploits type inference to understand

values flowing to locations and thus
names

• Approximate, although safe under
many (most?) conditions

• Reasonably efficient
– Although I didn’t show the numbers, they

are now better than reported in the ICSE
paper

J-4

Program invariants

• One way to try to manage the
complexity of software systems is to
use program invariants

• Invariants can aid in the development
of correct programs
– The invariants are defined explicitly as part

of the construction of the program
[Dijkstra][Hoare][Gries][…]

Invariants and evolution

• Invariants can aid in the evolution of
software as well

• In particular, programmers can easily
make changes that violate unstated
invariants
– The violated invariants are often far from

the site of the change
– These changes can cause errors
– The presence of invariants can reduce the

number of or cost of finding these
violations

Other uses for invariants

• Documenting code
• Checking assumptions: convert to
assert

• Locating unusual conditions
• Providing hints for higher-level profile-

directed compilation [Calder]
• Bootstrapping proofs

[Wegbreit][Bensalem]
• …

However…

Despite all the
potential benefits
of having
invariants in
programs, there
are relatively few
invariants found in
actual programs

�

There is no obvious
reason to believe that
this will change due to
more research results
and more education

Today’s focus

• An approach to make invariants more
prevalent and more practical

• Underlying assumption:
– The presence of invariants will reduce the

difficulty and cost of evolution

• Goal: recover invariants from
programs

• Technique: run the program, examine
values

• Artifact: Daikon

Goal: Recover invariants

• Detect invariants such as those found
in assert statements or specifications
– x > abs(y)
– x = 16*y + 4*z + 3
– array a contains no duplicates
– for each node n, n = n.child.parent
– graph g is acyclic
– …

J-5

Experiment 1 [Gries 81]:
Recover formal specifications

// Sum array b of length n into
// variable s
i := 0; s := 0;
while i ≠ n do
 { s := s+b[i]; i := i+1 }

Precondition: n ≥ 0
Postcondition: S = Σ0 ≤ j < n b[j]
Loop invariant:

0 ≤ i ≤ n and S = Σ 0 ≤ j < i b[j]

Test suite

• 100 randomly-generated arrays
– length uniformly distributed from 7 to 13
– elements uniformly distributed from –100

to 100

• First guess for a test suite
– Turned out to work well
– More on test suites later on

Inferred invariants

ENTRY:
 N = size(B)

 N in [7..13]♦
 B: All elements in [-100..100]

EXIT:
 N = I = orig(N) = size(B)

 B = orig(B)

 S = sum(B)♦
 N in [7..13]
 B: All elements in [-100..100]

♦ Formal
specification

(goal)

Inferred loop invariants

LOOP:

 N = size(B)

 S = sum(B[0..I-1])♦
 N in [7..13]

 I in [0..13]♦
 I <= N♦
 B: All elements in [-100..100]

 B[0..I-1]: All elements in [-100..100]

Experiment 2:
Code without explicit invariants

• 563-line C program: regular
expression search & replace
[Hutchins][Rothermel]

• Task: modify to add Kleene +
• Complementary use of both

detected invariants and traditional
tools (such as grep)

Programmer use of invariants

• Helped explain use of data structures
– regexp compiled form (a string)

• Contradicted some maintainer
expectations
– anticipated lj < j in makepat
– queried for counterexample
– avoided introducing a bug

• Revealed a bug
– when lastj = *j in stclose, array bounds

error

J-6

More invariant uses

• Showed procedures used in limited
ways
– makepat

start = 0 and delim = ’\0’

• Demonstrated test suite inadequacy
– #calls(in_set_2) = #calls(stclose)

• Changes in invariants validated
program changes
– stclose: *j = orig(*j)+1
– plclose: *j ≥ orig(*j)+2

Experiment 2 conclusions

• Invariants
– effectively summarize value data
– support programmer’s own inferences
– lead programmers to think in terms of

invariants
– provide serendipitous information

• Additional useful components of
Daikon
– trace database (supports queries)
– invariant differencer

Other experiments

Students
UW CSE 142 (C, small)
MIT 6.170 (Java, ≤ 5000
lines)

Testing research
Hoffman (Java, 2000
lines)
Siemens (C, ~500 lines)

Program checkers
Xi (Java, small)
ESC (Java, 500 lines)

Textbooks
Gries (Lisp, tiny)
Weiss (Java, small)
Java in a Nutshell
(Java, ≤ 300 lines)

Medic planner (Lisp,
13,000 lines)

Ways to obtain invariants

• Programmer-supplied
• Static analysis: examine the program

text [Cousot][Gannod]
– properties are guaranteed to be true
– pointers are intractable in practice

• Dynamic analysis: run the program
– complementary to static techniques

Dynamic invariant detection

• Look for patterns in values the program
computes

–Instrument the program to write data trace files
–Run the program on a test suite
–Invariant engine reads data traces, generates
 potential invariants, and checks them

• Roughly, machine learning over program
traces

Invariants

Instrumented
program

Original
program

Test suite

RunInstrument

Data trace
database

Detect
invariants

Daikon implementation

• 20,000 lines of Java
– Plus front ends, utilities
– Daikon 1: 6,500 lines of Python

• Front ends: C/C++, Java, Lisp
• Builds on others’ programs and

libraries
– Lackwit, Ajax, EDG, Jikes
– (JOIE, Bobby, JavaClass, javac, JavaCC)

• Prototype available from Ernst

J-7

Running the program

• Requires a test suite
– Standard test suites are adequate
– Relatively insensitive to test suite (if large

enough)

• No guarantee of completeness or
soundness
– Useful nonetheless (cf. Purify, ESC,

PREfix)
– Complementary to other techniques and

tools

Sample invariants

• x,y,z are variables; a,b,c are constants
• Invariants over numbers

– unary: x = a, a ≤ x ≤ b, x ≡ a(mod b), …
– n-ary: x ≤ y, x = ay + bz + c,

x = max(y, z), …

• Invariants over sequences
– unary: sorted, invariants over all elements
– with sequence: subsequence, ordering
– with scalar: membership

• Why these invariants?

Checking invariants

• For each potential invariant:
– Instantiate

• That is, determine constants like a and
b in y = ax + b

– Check for each set of variable values
– Stop checking when falsified

• This is inexpensive
– Many invariants, but each cheap to check
– Falsification usually happens very early

Performance: runtime growth

• Cubic in number of variables at a
program point
– Linear in number of invariants

checked/discovered

• Linear in number of samples (test suite
size)

• Linear in number of instrumented
program points

Absolute runtime

• A few minutes per “average”
procedure
– 10,000 calls
– 70 variables
– Instrument entry and exit

• Unoptimized prototype

Relevance

• Our first concern in this research was
whether we could find any invariants
of interest

• When we found we could, we found a
different problem
– We found many invariants of interest
– But most invariants we found were not

relevant

J-8

Improved invariant relevance

• Add desired invariants
– Implicit values
– Unused polymorphism

• Eliminate undesired invariants (and
improve performance)
– Unjustified properties
– Redundant invariants
– Incomparable variables

1. Implicit values
Find relationships over non-variables

• array: length, sum, min, max
• array and scalar: element at

index, subarray
• number of calls to a procedure
• …

Derived variables

• Successfully produces desired
invariants

• Adds many new variables
– slowdown
– irrelevant invariants

• Staged derivation and invariant
inference
– avoid deriving meaningless values
– avoid computing tautological invariants

2. Unused polymorphism

• Variables declared with general type,
used with more specific type
– Ex: given a generic list that contains only

integers, report that the contents are
sorted

• Also applicable to subtype
polymorphism

Unused polymorphism example

class MyInteger { int value; … }
class Link { Object element; Link next; … }

class List { Link header; … }

List myList = new List();
for (int i=0; i<10; i++)

 myList.add(new MyInteger(i));

Desired invariant in class List
header.closure(next).element.value:
sorted by ≤

Polymorphism elimination

• Pass 1: front end outputs object ID,
runtime type, and all known fields

• Pass 2: given refined type, front end
outputs more fields

• Effective for programs tested so far
• Sound for deterministic programs

J-9

3. Unjustified properties

Given three samples for x:
x = 7

x = –42

x = 22

Potential invariants:
x ≠ 0
x ≤ 22
x ≥ –42

Statistical checks:
check hypothesized distribution

• Probability of no zeroes (to show x ≠ 0) for v
values of x in range of size r

• Range limits (e.g., x ≤ 22)
– same number of samples as neighbors (uniform)
– more samples than neighbors (clipped)

v

r





 − 1
1

variable value

of

 s
am

pl
es

variable value

of

 s
am

pl
es

Duplicate values

• Array sum program:
i := 0; s := 0;

while i ≠ n do
 { s := s+b[i]; i := i+1 }

• b is unchanged inside loop
• Problem: at loop head

–88 ≤ b[n – 1] ≤ 99
–556 ≤ sum(b) ≤ 539

• Reason: more samples inside loop

Disregard duplicate values

• Idea: count a value only if its var was
just modified

• Front end outputs modification bit per
value
– compared techniques for eliminating

duplicates

• Result: eliminates undesired invariants

4. Redundant invariants

• Given
 0 ≤ i ≤ j

• Redundant
 a[i] ∈ a[0..j]
 max(a[0..i]) ≤ max(a[0..j])

• Redundant invariants are logically implied
• Implementation contains many such tests

Suppress redundancies

• Avoid deriving variables: suppress 25-
50%
– equal to another variable
– nonsensical

• Avoid checking invariants:
– false invariants: trivial improvement
– true invariants: suppress 90%

• Avoid reporting trivial invariants:
suppress 25%

J-10

5. Unrelated variables

b < p

myweight < mybirthyear

int myweight, mybirthyear;

bool p;
int *p;

Limit comparisons

• Check relations only over
comparable variables
– declared program types
– Lackwit [O’Callahan]

Comparability results

• Comparisons:
– declared types: 60% as many comparisons
– Lackwit: 5% as many comparisons; scales

well

• Runtime: 40-70% improvement
• Few differences in reported invariants

Richer types of invariant

Object/class invariants
node.left.value < node.right.value

string.data[string.length] = ’\0’

Pointers (recursive data structures)
tree is sorted

Conditionals
if proc.priority < 0 then
 proc.status = active

ptr = null or *ptr > i

Pointer experiment

• Data structures from Weiss’s Data
Structures and Algorithm Analysis in
Java

• Identified goal invariants by reading
book

• Added linearization and data splitting
to Daikon

• Results
– 90-100% of goal invariants
– few extraneous invariants

Object invariant

class LinkedList { Link header; … }

class Link { int element; Link next; …
}

Object invariant:
header ≠ null
header.element = 0

size(header.closure(next)) ≥ 1

J-11

Conditional pointer invariant

At exit of
LinkedList.insert(Object x, LinkedListItr p)

if (p ≠ null and p.current ≠ null) then
size(header.closure(next)) =

 size(orig(header.closure(next))) + 1

else
header.closure(next)) =
 orig(header.closure(next))

Linearize data structures

• Traverse pointer-directed data
structures

• Present to invariant engine as
sequence
– cyclicity determined by front end

Conditionals:
mechanism

1. Split the data
into parts

2. Compute
invariants over
each subset of
data

3. Compare results,
produce
implications

x even?

x=1, y=2
x=0, y=0
x=3, y=8
x=4, y=0

x=0, y=0
x=4, y=0

x=1, y=2
x=3, y=8

yes no

if even(x)then
 y = 0
else
 y = 2x

Data splitting criteria

• Static analysis ♦
• Distinguished values: zero, source

literals, mode, outliers, extrema
• Exceptions to detected invariants
• User-selected
• Exhaustive over random sample

Scaling

• Technology
– many program points
– large data structures
– solution: next slide

• Utility
– many program points
– different invariants
– different uses
– solution: experiments, case studies

Incremental inference

• Online algorithm improves
– response time
– space
– front end computation
– back end computation

• Process each variable value once, then
discard

• Stop checking invariants after falsification
• To do: selectively disable instrumentation

J-12

Summary

• Dynamic invariant detection is feasible
– Conceived and developed the idea
– Prototype implementation

• Dynamic invariant detection is accurate &
useful
– Techniques to improve basic approach
– Experiments provide preliminary support

• Dynamic invariant detection is a challenging
and promising area for research and practice
– Practical? Not yet clear!

Path Profiling: Ball and Larus

#include <stdio.h>
main(t,_,a)
char *a;
{
return!0<t?t<3?main(-79,-13,a+main(-87,1-_,main(-86,0,a+1)+a)):
1,t<_?main(t+1,_,a):3,main(-94,-27+t,a)&&t==2?_<13?
main(2,_+1,"%s %d %d\n"):9:16:t<0?t<-72?main(_,t,
"@n’+,#’/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l+,/n{n+,/+#n+,/#\
;#q#n+,/+k#;*+,/’r :’d*’3,}{w+K w’K:’+}e#’;dq#’l \
q#’+d’K#!/+k#;q#’r}eKK#}w’r}eKK{nl]’/#;#q#n’){)#}w’){){nl]’/+#n’;d}rw’ i;#\
){nl]!/n{n#’; r{#w’r nc{nl]’/#{l,+’K {rw’ iK{;[{nl]’/w#q#n’wk nw’ \
iwk{KK{nl]!/w{%’l##w#’ i; :{nl]’/*{q#’ld;r’}{nlwb!/*de}’c \
;;{nl’-{}rw]’/+,}##’*}#nc,’,#nw]’/+kd’+e}+;#’rdq#w! nr’/ ’) }+}{rl#’{n’ ’)# \
}’+}##(!!/")
:t<-50?_==*a?putchar(31[a]):main(-65,_,a+1):main((*a==’/’)+t,_,a+1)
:0<t?main(2,2,"%s"):*a==’/’||main(0,main(-61,*a,
"!ek;dc i@bK’(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1);
}

What does it do?
Run it!

On the first day of Christmas my true love gave to me
a partridge in a pear tree.

On the second day of Christmas my true love gave to me
two turtle doves
and a partridge in a pear tree.

On the third day of Christmas my true love gave to me
three french hens, two turtle doves
and a partridge in a pear tree.
...

• But why?
– http://www.research.microsoft.com/~tball/papers/XmasGift/

– Reverse engineering the Twelve Days of Christmas

Counting arguments

• The poem takes O(N*N) time to read and
O(N*N) space to write
– N is the number of gifts

• We can derive an exact count of the number
of times gifts

• A gift with ordinal value t is mentioned 13-t
times in the poem
– For example, "five gold rings" occurs 13-5=8 times

• Summing over all gifts yields 1+2+...11+12 =
13*6 = 78 total gift mentions
– 66 mentions of non-partridge gifts

Continuing like this…key
numbers are

• 12 days of Christmas (also 11, to
catch "off-by-one" cases)

• 26 unique strings
• 66 occurrences of non-partridge-

in-a-pear-tree presents
• 114 strings printed
• 2358 characters printed

Pretty printing the program...

/* pretty-printed version of twelve days of christmas program */
#include <stdio.h>
main(t,_,a)
char *a;
{
 return
 ((!0) < t)
 ? ((t < 3
 ? main(-79,-13,a+main(-87,1-_,main(-86,0,a+1)+a))
 : 1),

 (t < _
 ? main(t+1,_,a)
 : 3),

 (main(-94,-27+t,a)
 && (t==2
 ? (_ < 13
 ? main(2,_+1,"%s %d %d\n")
 : 9)
 : 16)))

 : (t < 0
 ? (t < -72
 ?

J-13

main(_,t,

"@n’+,#’/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l+,/n{n+,/+#n+,
/#\

;#q#n+,/+k#;*+,/’r :’d*’3,}{w+K w’K:’+}e#’;dq#’l \
q#’+d’K#!/+k#;q#’r}eKK#}w’r}eKK{nl]’/#;#q#n’){)#}w’){){nl]’/+#n’;d}rw’ i;#

\
){nl]!/n{n#’; r{#w’r nc{nl]’/#{l,+’K {rw’ iK{;[{nl]’/w#q#n’wk nw’ \
iwk{KK{nl]!/w{%’l##w#’ i; :{nl]’/*{q#’ld;r’}{nlwb!/*de}’c \
;;{nl’-{}rw]’/+,}##’*}#nc,’,#nw]’/+kd’+e}+;#’rdq#w! nr’/ ’) }+}{rl#’{n’ ’)#

\
}’+}##(!!/")

 : (t < -50
 ? (_ == *a
 ? putchar(31[a])
 : main(-65,_,a+1))
 : main((*a==’/’)+t,_,a+1)))
 : (0 < t
 ? main (2,2,"%s")
 : * a==’/’
 || main(0,main(-61,*a,
 "!ek;dc i@bK’(q)-[w]*%n+r3#l,{}:\nuwloca-O;m

.vpbks,fxntdCeghiry"),a+1)
)
);
}

Structure of the program

• After some pretty easy work, the
program consists of just main
– Calls itself repeatedly

• No loops, only recursion

– No assignments to any variables
– Two large strings appear to encode

the text of the poem

main: three arguments

• The first argument t is count of
the number of arguments on the
command line (including the
name of the program itself)

• The selection of different legs of
the function seem to be driven by
the parameter t

Use profiling to extract counts

• Apply the Hot Path Browser (HPB)
tool (Ball, Larus and Rosay)
– Instruments programs to record and

display Ball/Larus path profiles
– A Ball/Larus path profile counts how

many times each acyclic
intraprocedural path executes

• The upper left pane
shows the statistics
about each executed path

• 12 out of a total of 24
possible paths executed

• The paths listed in
ascending order of
frequency

• The path with id 13 has
been selected (red line)
and highlighted in the
source code view

J-14

Path clusters by frequency:
manually identify computational signature

• Path 0 initializes the recursion with the call main(2,2,...)
• Paths 19, 22, and 23 control the printing of the 12

verses
– Path 19 represents the first verse
– Path 23 the middle 10 verses
– Path 22 the last verse
– The sum of these paths’ frequencies is 12
– The browser can help show that each of the paths covers

a different set of recursive calls to main

• Paths 9 and 13 control the printing of the non-
partridge-gifts within a verse
– The frequencies of the two paths sum to 66

More

• Paths 2 and 3 print out a string
– Each path has frequency 114, the exact number of

strings predicted by our model

• Paths 1 and 7 print out the characters in a string
– Each path executes 2358 times

• Paths 4 and 5 with the large and unusual frequencies
of 24931 and 39652?
– Path 4 skips over n sub-strings in the large string

• Every time a sub-string is printed, a linear search through
the text string is done to find the string

– Path 5 linearly scans — for each character to be printed
— the string that encodes the character translation to
find the character that matches the current character to
be printed

Jinsight:
 http://www.research.ibm.com/jinsight/

• Tools for analyzing the dynamic behavior of Java
programs
– Visualization
– Pattern extraction
– Database query
– Multidimensional analysis

• Applied to
– performance analysis
– memory leak diagnosis
– debugging
– program understanding

• A special focus on the analysis of large, complex,
data-intensive, and web-based systems

De Pauw,
Sevitsky, et al.

Tasks

• Visualizations of object usage, garbage collection and
the sequence of activity in each thread

• Pattern visualizations extract structure in repetitive
calling sequences and complex data structures
– Analyze large amounts of information in a concise form

• Information exploration
– Specify filtering criteria
– Drill down from one view to another to explore details
– Create units that match features of study

• Measurement
– Execution activity or memory summarized at any level of

detail, along call paths, and along two dimensions
simultaneously

Object histogram view:
instances grouped by class, indicating level of activity

Object histogram view

• Class names along the left
edge

• Each rectangle denotes an
instance of that class or the
amount of memory
consumed by instances of
the class

• A diamond shape denotes
the class object for a given
class

• A rectangle’s color will vary
according to a black-to-blue-
to-red color spectrum

• Garbage collected objects
appear as rectangular
outlines

J-15

Method histogram view:
methods grouped by class

•Class names
along the left edge

•Rectangles
represent method
of the class to its
left

Call tree view:
Summarize call paths from or to a given set of

method invocations

Execution view:
overview and details of communication among

objects per thread as a function of time

• Object represented by vertical
stripe colored according to the
object’s class

• Time progresses downward and
time units on right

• A stripe’s top edge is the time of
method call

– The height reflects total time spent
executing the method

• Stripes cascade to the right as
methods sends messages

• Stripes grouped in columns by
thread

• Leftmost column reserved for
garbage collection information

Zoomed in for detail

J-16

Execution pattern view:
summarizes all invocations of a selected

method highlighting the differences

A summary of all the println
occurrences in the trace

• Reveals that all println
messages produce the same
pattern of execution except
for one area of divergence

• Mouse the bright blue stripe
to identify it as a call to
java/io/Writer.write.

–"1X" indicates that this
particular call pattern occurred
just once

• ½ in beveled frame indicates
there are two variant
execution patterns at this
point and that pattern 1 is
shown

Reference pattern view Shows patterns of references to
or from a set of objects

• Squares represent objects,
each colored uniquely by
class

• A diamond represents a class
object

• Single squares denotes a
single instance

• Twin squares represent
multiple instances

• Arrows between nodes denote
one or more references
between instances

• An arrow points to the
object(s) being referenced

Slices
(not Weiser slices)

• A slice is a subset of the trace information
corresponding to a user-selected feature in a
program
– Applies to any view

• Slices intended to filter out extraneous
information, focusing analysis on one area

• Slices give you an extra dimension for
measuring program execution
– Can compute any measurement about a program

relative to any defined slice
• Ex: define slices to represent functional areas of your

program; then measure execution time in each
thread, method, method invocation, etc. spent in
each functional area

Workspaces:
collections of filterings

J-17

Tools

• Static vs. dynamic
– Complementary

• Finding bugs vs. improving
performance

• Program representations
– Affect precision and performance

• Partial specifications
– You get some benefit for small cost

• Inference to reduce programmer effort
– Type, dynamic

