CSE584: Software Engineering
Lecture 1: Introduction & Overview

David Notkin
Computer Science & Engineering

University of Washington
http:/lwww.cs.washington.edu/education/courses/584/

Outline

Intent and overview of course

« Software engineering overview

— Stuff you already know, but it's important to lay it
out so we are working from the same page

Notkin's top 10 “insights”
— My goal is to lay out my prejudices and views, to

increase your understanding of the intent of the
course

Overview of course work and
administrivia

Introductions

« Very useful for me (and you)
— What do you do?
— What do you want from the

class? )
— What are the most serious Y 1
software engineering Lo

problems you face?
« But time consuming, so we’'ll
do it electronically

— Through the email list
(cse584@cs.washington.edu)
— Distributed to the entire class

But | do want some basics

* What companies do you work for?

* What is your general responsibility?
— Development, testing, maintenance,
other?
« Take a couple of minutes at each site
to gather these data
— I'll handle the UW site

— The person whose last name comes first
alphabetically handles the other sites

« Announce when you're ready

Interaction

¢ | like to have interaction with students
during class, especially 584
— You have tons of key insights in your
head
— It's boring just listening to me
« Especially in the evening & during a long class
e Try just interrupting me; if that doesn’t
work, we'll try something else
* Remind me to repeat questions, since
it’s often hard to hear them at other
sites

Your undergraduate
experience?

* How many of you took
an undergraduate
software engineering

course?
« Did any of you think it 7 ¥

was good? f
» What, specifically, was -

particularly good or

bad about it?




Intent of course

« Most of you have jobs engineering software
— Idon’t (and I never really have)
¢ So, what can | teach you?

— Convey the state-of-the-art
« Especially in areas in which you don't usually work
— Better understand best and worst practices
— Consider differences in software engineering of
different kinds of software
* You provide the context and experience

* Meeting and talking to each other is key

Lots of differences among you

* You have alotin common
— Undergrad degree in CS or related field
— Significant experience in the field
— You're really smart
* You also have a lot of differences
— Development vs. testing
— Desktop vs. real-time
— Different company cultures
— ...and much, much more
¢ This in part will be why some material in the
course will resonate with you, while other
material won’t

My metric for success

| will consider this a successful course if,

over the course of the next year or so, you
approach some specific problem you face

differently because of the course

* Maybe from readings

* Maybe from discussions with other students
* Maybe from assignments

* Maybe even from lecture

Another key intent

There is general agreement that

— Research in software engineering doesn’t have
enough influence on industrial practice

— And much in industry could improve
Why is this true?

— What can academia do to improve the situation?
— What can industry do to improve the situation?
By the way, | believe that this perception is
not entirely accurate

— Butit's still a crucial issue for lots of reasons

Possible impediments

e Lack of communication
—Industry doesn't listen to academia
—Academia doesn’t understand

industrial problems

e Academic tools often support
programming languages not
commonly used in industry

Other possible impediments?

« In groups of 3 or 4, list some
other possible impediments

¢ In 3 minutes, we’ll gather a set of
suggestions




Tichy’s main impediment

« Walter Tichy has claimed that the major impediment
is the lack of “experiments” in CS research
— “Should Computer Scientists Experiment More? 16
Excuses to Avoid Experimentation.” IEEE Computer
31(5), May 1998.
— http:/lwwwipd.ira.uka.de/~tichy/
« | have lots of reactions, including
— ldon't think industry, as arule, finds this to be a (the)
major impediment
— We do experimentation, in a different style

— Evaluation is difficult in software engineering, so we
must be creative

— This is an example of science envy

Software is increasing critical to

society

40000
35000
30000 E CSE143 program
25000 H 4-speed xmission
20000 B ATM machine
o o8z

- ENT5.0

KLOC

and it's getting bigger and more complex

Absolute sizes

1401 EATM (my 3 year-
120+ old)
1 EB-2 (Tao on my
100 shoulders)
80 B NT5.0 (Statue of
601 Liberty from base)
40+
« 50 lines per page
201 - Double sided
0+ « 500 pages/ream

Feet High (2 inches)

How | spend my time

The Great Pyramid of Giza is 481’

The Kingdome was 250’

The Colossus of Rhodes is 110’

The Eiffel Tower is 1033’

The Graduate Reading Room in Suzzallo is
65’

A 747 is 63’ to the top of the tail

The Brooklyn Bridge is 135’ above the water
Titanic’s height from keel to bridge is 104’
The EE1 building is about 90’

Delivered source lines per
person

« Common estimates are that a person can
deliver about 1000 source lines per year
— Including documentation, scaffolding, etc.
— Independent of the programming language
— Yeah, you do better ©

« Obviously, most complex systems require
many people to build

« Even an order of magnitude increase doesn’t
eliminate the need for coordination

Inherent & accidental
complexity

Brooks distinguishes these kinds of
software complexity

— We cannot hope to reduce the inherent complexity
— We can hope to reduce the accidental complexity
Some (much?) of the inherent complexity
comes from the incredible breadth of
software we build

That said, it's not always easy to distinguish
between these kinds of complexity




“The Software Crisis”

We've been in the midst of a “software
crisis” ever since the 1968 NATO meeting

— crisis — (1) an unstable situation of extreme
danger or difficulty; (2) a crucial stage or turning
point in the course of something [WordNet]

— lwas 13, and many of you weren’t born yet

We cannot produce or maintain high-quality
software at reasonable price and on
schedule

— Gibb’s Scientific American article [in your course pack]

— “Software systems are like cathedrals; first we
build them and then we pray” —S. Redwine

Some classic “crisis” issues

* Relative cost of hardware/software
— Where's Moore’s Law for software?
* Low productivity
* “Wrong” products
« Poor quality
— Importance depends on the domain
¢ Constant maintenance
— “If it doesn’t change, it becomes useless”
Technology transfer is (too) slow

Notkin’s view—"“mostly
hogwash”

Given the context, we do pretty well

— We surely can, should and must improve

Some so-called software “failures” are not

— They are often primarily management errors
(Ariane, Denver airport, U.S. air traffic control, etc.)

« Interesting recent article in the Wall Street Journal
on Australia’s and New Zealand's success in air
traffic control

— Read comp.risks

In some areas, we may indeed have a
looming crisis

— Safety-critical real-time embedded systems
— Y2K wasn’t

Software engineering is a
“wicked problem”

« Cannot be easily defined so that all stakeholders agree on
the problem to solve

« Require complex judgments about the level of abstraction

at which to define the problem

Have no clear stopping rules

Have better or worse solutions, not right and wrong ones

Have no objective measure of success

Require iteration — every trial counts

Have no given alternative solutions — these must be

discovered

« Often have strong moral, political or professional
dimensions

S. Buckingham Shum
http://kmi.open.ac.uk/people/shs/org-knowledge/aikm97/sbs-paper2.html

Other problems

Lack of well-understood
representations of software [Brooks]
makes customer and engineer
interactions hard

Relatively young field

Software intangibility is deceptive

Law XXIIl, Norman Augustine
[Wulf]

“Software is like entropy. It is difficult
to grasp, weighs nothing, and obeys
the second law of thermodynamics;
i.e., it always increases.”




Dominant discipline

As the size of the software system
grows, the key discipline changes
[Stu Feldman, thru 107]

Code Size Discipline
103 Mathematics
104 Science
10° Engineering
106 Social Science
107 Politics
108 ??

Notkin’s Top 10 Observations

« About software engineering
— With apologies and appreciation to many
unnamed souls
* I'd appreciate help revising this list
over the quarter
¢ And, again, the intent of this is to
convey, now, many of my prejudices

— You're not required to share them, but
you’ll understand more because I'm being
explicit about (most of) them

1. Don’t assume similarity
among software systems

« Does (and should) the reliability of a nuclear
power plant shutdown system tell us much
about the reliability of an educational game
program?

« Does (and should) the design of a sorting
algorithm tell us much about the design of
an event-based GUI?

* So, assume differences until proven
otherwise: not doing so causes a
tremendous amount of confusion in the
degree of applicability of different research
approaches, tools, etc.

2. Intellectual tools dominate
software tools in importance

¢ How you think is more important than
the notations, tools, etc. that you use

« Ex: Information hiding is a key design
principle
— Interface mechanisms can enforce
information hiding decisions but cannot
help one make the decisions
¢ Ex: The notion of design patterns is
more important than languages that
let you encode them

3. Analogies to “real”
engineering are fun but risky

¢ Onereason is because of the
incredible rate of change in hardware
and software technology

— Wulf: what if the melting point of iron
changed by a factor of two every 18
months?

« Another is that software seems to be
constrained by few physical laws

¢ But I'll make them anyway, I'm sure
— And you will, too

Aside: should software
engineers be licensed?

You may have heard about this issue

— For example, Texas now requires (under some
conditions) that software engineers be licensed as
professional engineers

It's an incredibly complex issue

— Technically, socially, politically and legally

— I'd be happy to discuss my views on this with
individuals (including on the mailing list), but |
won’t spend time in class on it

BTW, | am strongly opposed to licensing

software engineers for the foreseeable future




4. Estimating benefits is easier
than estimating costs

« “If only everyone only built software
my way, it'd be great” is acommon
misrepresentation

— Ex: The formal methods community is
just starting to understand this

* But at the same time, estimating the
costs and the benefits is extremely
hard, leaving us without a good way to
figure out what to do

5. Programming languages
ensure properties distant from
the ones we want

* Programming languages can help a
lot, but they can’t solve the "software
engineering" problem

Ex: Contravariant type checking (such
as in ML) has significant benefits, but
regardless, it doesn’t eliminate all
errors in ML programs

— And covariant typing, with its flaws, may
be useful in some situations

6. The total software lifecyle
cost will always be 100%

« Software development
and maintenance will
always cost too much

« Software managers
will always bitch and
moan

« Software engineering
researchers will
always have jobs

« Software engineers
will always have jobs

7. Software engineering is
engineering

¢ Although software engineering draws
heavily on mathematics, cognitive
psychology, management, etc., it is
engineering in the sense that we produce
things that people use
— It’s not mathematics, nor cognitive psychology,

nor management (nor etc.)
« Nor logical poetry (cf. the Michael Jackson video
we'll see later in the quarter)

« If somebody is talking about engineering
software without ever mentioning
“software”, run away

8. Tradeoffs are key, but we're
not very good at them

« Getting something for nothing is great, but it
isn’t usually possible
* We almost always choose in favor of hard
criteria (e.g., performance) over soft criteria
(e.g., extensibility)
— This makes sense, both practically and
theoretically
— Brooks’ Golden Rule doesn't really work
— But the situation leaves us up a creek a lot of the
time
* Maybe we're about to get better at this as the
cost of people continues to grow
— But I doubt it

9. It’s good to (re)read anything
by Brooks, Jackson & Parnas

¢ “A classic is something everyone
wants to have read, but nobody wants
to read.” [Mark Twain]

« It’'s more important to read their works
than to read the latest glossy rag or
modern book on the latest fad

¢ Really




10. Researcher & Practitioner

« Software engineering researchers
should have a bit of the practitioner in
them, and software engineering
practitioners should have a bit of the
researcher in them

* At the end of the quarter, | hope that
I'll have more understanding of
practice, and you’ll have more
understanding of the research world

Overview—five topics

* Requirements and specification

« Design

« Evolution (maintenance, reverse
engineering, reengineering)

¢ Analyses and tools (static and dynamic)

* Quality assurance and testing

* Yes, there is some overlap
« lreserve the right to completely change my mind
about the order and exactly what is covered!

What’s omitted? Lots

¢ Metrics and measurement
— Somein QA

« CASE
— Some in evolution and tools

« Software process
— CMM, ISO 9000, etc.

« Specific methodologies

e [UXIML

« Software engineering for specific domains
(real-time, the web, etc.)

* What else?

Requirements & specification
(2 lectures)

¢ Formal methods

— State-based, algebraic,
model-based

— Model checking
e Problem and domain
analysis

— Problem frames, use-case,
collaborations, etc.

Highlight: A Michael
Jackson video

Design (2 lectures)

¢ Classic topics

— Information hiding

— Layered systems

— Event-based designs (implicit invocation)
* Neo-modern design

— Limitations of classic information hiding

— Design patterns

— Software architecture

— Frameworks

Evolution (2 lectures)

* Why software must change

¢ How and why software structure
degrades

* Approaches to reducing structural
degradation

¢ Problem-program mapping

* Program understanding,
comprehension, summarization




Analyses and Tools (2 lectures)

e Static analyses
—Type checkers
— Extended type checkers
« Dynamic analyses
— Profiling
—Memory tools
—Inferring invariants

Quality assurance (1 lecture)

Verification vs. validation
e Testing

—White box, black box, etc.
Reliability

Safety (maybe)

Anything else?

Overview of course work

« Four assignments, each of a different form

— A standard homework, a paper distilling research in an
area, an assessment of aresearch prototype tool, etc.
— All turned in electronically; each worth 23% of the grade
* The other 8% will represent your interaction in lecture
and (more importantly) on the mailing list
— Discussion of papers, of lectures, and of other software
engineering issues on your mind

« This is especially important for a distance learning
class

« It's the best way to learn from each other

— You are responsible for pushing the discussion threads,
although the TA and I will participate

Grading: Let’s make a deal

« If you focus on the material and
don’t get compulsive about
grading ...

e ... then I will focus on the
material and not get compulsive
about grades

Goodnight

« And don’t forget to buy those
course packs




