
 CSE P 501 18sp Exam 5/24/18  Sample Solution 

  Page 1 of 13 

Question 1.  (12 points) Regular expressions.  Our new summer intern is designing a 
programming language and has decided that the traditional syntax for comments is old 
and boring.  The comments in this new programming language will be strings that start 
with the three characters <## and end with the two characters #>.  Examples of 
comments: <## comment #> <### xyzzy ###> <###> <#####>.  Examples 
that are not comments: <##> (need at least <## at the beginning and #> at the end), 
<# # #> (first three characters <## can’t include spaces or other characters), etc. 
 
(a) (6 points) Give a regular expression that generates strings representing comments as 
described above.  (Hint: you may want to work on parts (a) and (b) at the same time.) 
 
Ground rules (the fine print): You may only use the basic regular expression operations of 
concatenation, choice (|), and repetition (*) plus the derived operators ? and +, and simple 
character classes like [abc0-9] and [^a-z].  You may use abbreviations like vowels = 
[aeiou]. You may not use more complex operators found in various software tools that handle 
extended regular expressions and you should not use ‘\’ or other escape characters.  If you need to 
differentiate between terminal characters and regular expression operators, underline the terminal 
characters to distinguish them or do something equally simple and easy to read. 
 
 
 
 
< # # ([^#]* | (#*[^#>]))* #+ > 
 
 
 
 
 
 
(b) (6 points) Draw a DFA that accepts comments as defined above. 
 
 

 
 
 
  

< # # # >

[^#] #
[^#>]



 CSE P 501 18sp Exam 5/24/18  Sample Solution 

  Page 2 of 13 

Question 2. (8 points)  Ambiguity.  The syntax used to specify regular expressions can 
itself be defined by a context-free grammar. Here is one possible grammar for regular 
expressions with the operators concatenation, choice ( | ), Kleene star ( * ), and 
parenthesized subexpressions over the alphabet { a , b }. 
 

R ::= R R    (concatenation) 
R ::= R | R   (the | here is the literal regular expression choice operator)  
R ::= R *    (Kleene star)  
R ::= ( R ) 
R ::= a  
R ::= b  

 
Show that this grammar for specifying the syntax of regular expressions is ambiguous. 
 
There are many possible examples, and it suffices to show either two distinct 
leftmost or rightmost derivations for string, or two distinct parse trees that generate 
the same string.  Here are two leftmost derivations for  aa|a: 
 
R => RR  =>  aR  =>  aR|R  =>  aa|R  =>  aa|a 
 
R  =>  R|R  =>  RR|R  =>  aR|R  =>  aa|R  =>  aa|a 
 
The corresponding parse trees also show the ambiguity. 



 CSE P 501 18sp Exam 5/24/18  Sample Solution 

  Page 3 of 13 

Question 3.  (20 points)  The you’re-probably-not-surprised-to-see-it LR parsing 
question.  Consider the following grammar. 
 

0. S’ ::= S $   ($ is end-of-file) 
1. S ::= ( S ) T 
2. S ::= x 
3. T ::= x 

 
(a) (12 points) Draw the LR(0) state machine for this grammar.  (You do not need to 
include the table with shift/reduce and goto actions, although you can write that out later 
if you find it useful to answer other parts of the question.)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(continued next page) 

S’ ::= . S $
S ::= . ( S ) T
S ::= . x

S’ ::= S . $

S ::= x .

S ::= ( . S ) T
S ::= .( S ) T
S ::= . x

S

x

(

( x

S ::= ( S . ) T

S

S ::= ( S ) . T
T ::= . x

)

T ::= x .

x

S ::= ( S ) T .
T



 CSE P 501 18sp Exam 5/24/18  Sample Solution 

  Page 4 of 13 

Question 3. (cont.)  Grammar repeated for reference 
 

0. S’ ::= S $ 
1. S ::= ( S ) T 
2. S ::= x 
3. T ::= x 

 
(b) (4 points) Compute FIRST, FOLLOW, and Nullable for each of the non-terminals in 
this grammar. 
 

Non-terminal FIRST FOLLOW nullable 

S' ( x  No 

S ( x ) $ No 

T x ) $ No 
 
 
 
 
 
 
(c) (2 points) Is this grammar LR(0)?  Why or why not?  
 
Yes.  No shift-reduce or reduce-reduce conflicts in the LR(0) state machine or 
tables. 
 
 
 
 
(d)  (2 points) Is this grammar SLR?  Why or why not?  
 
Yes.  Same reason as (c), or any LR(0) grammar is also SLR.  



 CSE P 501 18sp Exam 5/24/18  Sample Solution 

  Page 5 of 13 

Question 4. (8 points)  (LL parsing/grammars)  Here is the grammar from the previous 
question again: 
 

0. S’ ::= S $ 
1. S ::= ( S ) T 
2. S ::= x 
3. T ::= x 

 
Is this a LL(1) grammar suitable for top-down predictive parsing?  If yes, give a specific 
technical justification for your answer.  If not, give a grammar that generates the same 
language and is LL(1) if that is possible.  If no LL(1) grammar can generate the same 
language produced by the original grammar, give an explanation of why this is not 
possible. 
 
Hint: You might want compute the FIRST/FOLLOW/nullable information for this 
grammar by answering that part of the previous question before you answer this question.   
 
Yes, this grammar is LL(1).  None of the non-terminals are nullable, so we don’t 
need to consider FOLLOW sets.  The only non-terminal with more than one 
production is S, and the first sets of the right-hand sides of those productions are 
disjoint ( { ( } and { x } ), so we can write a predictive top-down parser for the 
grammar as given. 
 
  



 CSE P 501 18sp Exam 5/24/18  Sample Solution 

  Page 6 of 13 

Question 5. (26 points)  Compiler hacking.  For this question we would like to add a new 
counting loop to MiniJava.  (A copy of the MiniJava grammar is included at the end of 
the test for reference as needed.)  For our new loop, we’ll add the following rule to the 
MiniJava grammar: 
 
 Statement ::= “for” Identifier “from” Expression “to” Expression “do” Statement 
 
The idea is that the Statement in the loop body is executed repeatedly with the Identifier 
assigned successive integer values starting with the value of the first Expression and 
increasing by 1 each time the loop repeats until the final iteration where the Identifier has 
the value of the second Expression.  For example, the following code stores the value 1 + 
2 + … + 10 in variable sum: 
 
 sum = 0; 
 for i from 1 to 10 do sum = sum + i; 
 
The Identifier in the for statement must have been declared previously and must have 
type int.  The two Expressions are only evaluated once, before the Identifier is assigned 
its initial value and before the loop body executes.  The Expressions are not re-evaluated 
again as the loop executes.  So, for example, the following code has exactly the same 
effect as the previous example: 
 
 sum = 0; i = 0; 
 for i from i+1 to i+10 do sum = sum + i; 
 
In other words, the loop bounds i+1 and i+10 are evaluated before the loop begins 
execution and before the initial assignment to i, and are not reevaluated again.  The 
Expressions are evaluated in order from left to right.  If the value of the first Expression 
is greater than the value of the second Expression, then the body of the loop is not 
executed.  The value in the Identifier is not defined after the loop terminates – it might be 
equal to the value of one of the Expressions, or it could have any other value depending 
on what the implementation does. 
 
(a) (3 points) What new tokens and/or keywords would need to be added to the scanner 
and parser of our MiniJava compiler to add this new for statement to the original 
MiniJava grammar?  Just list the tokens; you don’t need to give JFlex or CUP 
specifications for them. 
 
We need tokens for the four new keywords: FOR, FROM, TO, and DO 
 
 
 
 
 
 
(continued on next page)   



 CSE P 501 18sp Exam 5/24/18  Sample Solution 

  Page 7 of 13 

Question 5. (cont.)  (b) (5 points) Complete the following new AST class to define an 
AST node type for the new for statement. You only need to define instance variables 
and the constructor. Assume that all appropriate package and import declarations are 
supplied, and don’t worry about visitor code. 
 
(Hint: recall that the AST package in MiniJava contains the following key classes: 
ASTNode, Exp extends ASTNode, Statement extends ASTNode, and 
Identifier extends ASTNode.  Also remember that each AST node constructor 
has a Location parameter.)  
 
public class For extends Statement {  
  // add instance variables below  
 
    public Identifier id; 
 
    public Exp e1, e2; 
 
    public Statement s; 
 
 
 
  // constructor – add parameters and method body below  
 
  public For( Identifier id, Exp e1, Exp e2, Statement s,  
                                            Location pos ){ 
     
    super(pos); 
 
    this.id = id; 
 
    this.e1 = e1; 
 
    this.e2 = e2; 
 
    this.s = s; 
 
 
 
  }    
} 
 
Note: Constructor parameters could be in a different order as long as that order 
matched the AST node creation code in the CUP semantic action for the new 
comparison operator, below. 
 
(continued on next page)  
  



 CSE P 501 18sp Exam 5/24/18  Sample Solution 

  Page 8 of 13 

Question 5. (cont.) (c) (5 points) Complete the CUP specification below to define a 
production for the new for statement with the associated semantic action(s) needed to 
parse a for statement and create an appropriate For node (as defined in part (b) above) 
into the AST. We have added the necessary additional code to the parser rule for 
Statement to get started.  
 
Hint: recall that the Location of an item foo in a CUP grammar production can be 
referenced as fooxleft. 
 
Statement ::= ...  
           | ForStatement:s  {: RESULT = s; :}  
          ... 
           ;  
 
ForStatement ::=  FOR Identifier:i FROM Exp:e1 TO Exp:e2 DO 

                        Statement:s 

                   {: RESULT = new For(i,e1,e2,s,ixleft) :} 

 
 
 
 
 
 
 
 
 
 
(d) (5 points) Describe the checks that would be needed in the semantics/type-checking 
part of the compiler to verify that a for statement is legal. You do not need to give code 
for a visitor method or anything like that – just describe what language rules (if any) need 
to be checked. 
 

- Verify that the for variable has been declared and has type int 
- Verify that expressions e1 and e2 have type int  

 
 
 
 
 
 
 
 
 
(continued on next page)  



 CSE P 501 18sp Exam 5/24/18  Sample Solution 

  Page 9 of 13 

Question 5. (cont.) (e) (8 points) Show the code shape for this new for statement, i.e., 
what code should be generated in the assembly language program to properly execute a 
for loop as specified on the previous pages.  You should show instructions, labels, and 
other assembly language-level details that are needed for the new for loop statement 
itself, and also show where the generated code for the two Expressions and Statement 
that makes up the loop body would appear.  Your code does not need to be precisely 
correct x86-64 assembly code (i.e., you were not expected to memorize instruction 
details), but it should be close enough so that your intent is clear and it basically 
equivalent to real x86-64 code. 
 
Hint: you probably won’t need all the space on this page for your answer.  But be careful 
that your code matches the described operation of the for statement given previously. 
 
This answer uses a strategy similar to the code shape outlined for our MiniJava 
compilers.  Values are pushed on the stack to save them if they will be needed later.  
The code arranges for the value of the second expression (the limit) to be stored on 
the top of the stack when the statement that makes up the loop body is executed.  
We are also careful to evaluate both loop expressions before assigning to the loop 
variable.  We also assume the loop variable is a local variable in the stack frame.  
The code could be generalized to allow the loop variable to be elsewhere but this 
shows the key ideas.  Other reasonable pseudo-code was fine if done correctly. 
 
   <code to evaluate first expression and leave value in %rax> 
   pushq  %rax    # save initial expression value 
   <code to evaluate second expression and leave value in %rax> 
   popq  %rdx    # reload initial expression value 
   movq  %rdx,offsetvar(%rbp)   # store initial expression in loop variable 
   pushq %rax    # save second expression on top of stack 
test: 
   movq offsetvar(%rbp),%rax # load variable into %rax 
   popq %rdx    # load limit into %rdx 
   cmpq %rdx,%rax  # set cond codes with var-limit 
   jg  done    # exit if var-limit > 0, i.e., var > limit 
   pushq %rdx    # push limit back on stack 
   <code for loop body statement> 
   movq offsetvar(%rbp),%rax # increment variable by 1 
   addq $1,%rax 
   movq %rax,offsetvar(%rbp) 
   jmp test    # repeat loop 
done:         # end of loop; second (limit) expression 
          # already popped from stack here 
  



 CSE P 501 18sp Exam 5/24/18  Sample Solution 

  Page 10 of 13 

The remaining questions concern the following control flow graph.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The rest of this page contains reference material and definitions that might be useful 
when answering some of the remaining questions. 
 
You should remove this page from the exam and use it while answering the remaining 
questions.  Do not write on this page – it will not be scanned for grading. 
 
Reference Material 
 
Every control flow graph has a unique start node s0. 
 
Node x dominates node y if every path from s0 to y must go through x. 
 - A node x dominates itself. 
 
A node x strictly dominates node y if x dominates y and x ≠ y. 
 
The dominator set of a node y is the set of all nodes x that dominate y. 
 
An immediate dominator of a node y, idom(y), has the following properties: 
 - idom(y) strictly dominates y (i.e., dominates y but is different from y) 
 - idom(y) does not dominate any other strict dominator of y 
A node might not have an immediate dominator.  A node has at most one immediate 
dominator. 
 
The dominator tree of a control flow graph is a tree where there is an edge from every 
node x to its immediate dominator idom(x). 
 
The dominance frontier of a node x is the set of all nodes y such that 
 - x dominates a predecessor of y, but 
 - x does not strictly dominate y 
  

x = a + b
y = c + d

y = b + c
a = c + d

a = b + c

x = b + c

B0

B1 B2

B3



 CSE P 501 18sp Exam 5/24/18  Sample Solution 

  Page 11 of 13 

Question 6. (18 points) Dataflow analysis – available expressions. 
 
Recall from lecture that an expression e is available at a program point p if every path 
leading to point p contains a prior definition of expression e and e is not killed along a 
path from a prior definition by having one of its operands re-defined on that path. 
 
We would like to compute the set of available expressions at the beginning of each basic 
block in the flowgraph shown on the previous page. 
 
For each basic block b we define the following sets: 
 
 AVAIL(b) = the set of expressions available on entry to block b 
 NKILL(b) = the set of expressions not killed in b (i.e., all expressions defined 
somewhere in the flowgraph except for those killed in b) 
 DEF(b) = the set of all expressions defined in b and not subsequently killed in b  
 
The dataflow equation relating these sets is 
 
 AVAIL(b) = ∩x ∈ preds(b) (DEF(x) ∪ (AVAIL(x) ∩ NKILL(x))) 
 
i.e., the expressions available on entry to block b are the intersection of the sets of 
expressions available on exit from all of its predecessor blocks x in the flow graph. 
 
On the next page, calculate the DEF and NKILL sets for each block, then use that 
information to calculate the AVAIL sets for each block.  You will only need to calculate 
the DEF and NKILL sets once for each block.  You may need to re-calculate some of the 
AVAIL sets more than once as information about predecessor blocks change.  
 
Hint: notice that there are only three expressions calculated in this flowgraph: a+b, b+c, 
and c+d.  So all of the AVAIL, NKILL, and DEF sets for the different blocks will contain 
some, none, or all of those three expressions. 
 
 
You should remove this page from the exam and use it while answering this question.  
Do not write on this page – it will not be scanned for grading. 
  



 CSE P 501 18sp Exam 5/24/18  Sample Solution 

  Page 12 of 13 

Question 6. (cont.)  (a) (8 points) For each of the blocks B0, B1, B2, and B3, write their 
DEF and NKILL sets in the table below. 
 

Block DEF NKILL 

B0 { a + b, c + d } { a + b, b + c, c + d } 

B1 { b + c, c + d } { b + c, c + d } 

B2 { b + c } { b + c, c + d } 

B3 { b + c } { a + b, b + c, c + d } 

 
 
(b) (10 points) Now, give the AVAIL sets showing the expressions available on entry to 
each block in the table below.  If you need to update this information as you calculate the 
sets, be sure to cross out previous information so it is clear what your final answer is. 
 

Block AVAIL 

B0 { } 

B1 { c + d } 

B2 { a + b, c + d } 

B3 { b + c, c + d } 

 
  



 CSE P 501 18sp Exam 5/24/18  Sample Solution 

  Page 13 of 13 

Question 7.  (18 points) Dominators and SSA. (a) (8 points) Using the same control flow 
graph from the previous problem, complete the following table.  List for each node: the 
nodes that dominate it, the node that is its immediate dominator (if any), and the nodes 
that are in its dominance frontier (if any): 
 

Node Dominators IDOM Dominance Frontier 

B0 B0 --- --- 

B1 B0, B1 B0 B3 

B2 B0, B2 B0 B3 

B3 B0, B3 B0 B1 
 
(b) (10 points)  Now redraw the flowgraph in SSA (static single-assignment) form.  You 
need to insert appropriate Φ-functions where they are required and, once that is done, add 
appropriate version numbers to all variables that are assigned in the flowgraph.  You 
should not insert extra Φ-functions at the beginning of a block if they clearly would not 
be appropriate there, but we will not penalize a few extraneous Φ-functions if they are 
correct, but possibly not needed.  You do not need to trace the steps of any particular 
algorithm to place the Φ-functions as long as you add them to the flowgraph in 
appropriate places. 
 
Note: this solution includes all of the Φ functions placed by the dominance frontier 
algorithm (which is the same set of functions place by the path-convergence 
criteria). 
 
 
 

a4 = Φ(a1,a3)
x3 = Φ(x1,x2)
y4 = Φ(y1,y3)
x4 = b0 + c0

x1 = a0 + b0
y1 = c0 + d0

a2 = Φ(a0,a4)
x2 = Φ(x1,x4)
y2 = Φ(y1,y4)
y3 = b0 + c0
a3 = c0 + d0

a1 = b0 + c0

B0

B1 B2

B3


