CSE P 501 – Compilers

Loops
Hal Perkins
Winter 2016
Agenda

• Loop optimizations
 – Dominators – discovering loops
 – Loop invariant calculations
 – Loop transformations

• A quick look at some memory hierarchy issues

• Largely based on material in Appel ch. 18, 21; similar material in other books
Loops

Much of the execution time of programs is spent here
∵ worth considerable effort to make loops go faster
∴ want to figure out how to recognize loops and figure out how to “improve” them
What’s a Loop?

• In source code, a loop is the set of statements in the body of a for/while construct
• But, in a language that permits free use of GOTOs, how do we recognize a loop?
• In a control-flow-graph (node = basic-block, arc = flow-of-control), how do we recognize a loop?
Any Loops in this Code?

i = 0
goto L8
L7: i++
L8: if (i < N) goto L9
 s = 0
 j = 0
 goto L5
L4: j++
L5: N--
 if(j >= N) goto L3
 if (a[j+1] >= a[j]) goto L2
 t = a[j+1]
 a[j+1] = a[j]
 a[j] = t
 s = 1
L2: goto L4
L3: if(s !=) goto L1 else goto L9
L1: goto L7
L9: return

Anyone recognize or guess the algorithm?
Any Loops in this Flowgraph?
Loop in a Flowgraph: Intuition

- Cluster of nodes, such that:
 - There's one node called the "header"
 - I can reach all nodes in the cluster from the header
 - I can get back to the header from all nodes in the cluster
 - Only once entrance - via the header
 - One or more exits
What’s a Loop?

- In a control flow graph, a loop is a set of nodes S such that:
 - S includes a header node h
 - From any node in S there is a path of directed edges leading to h
 - There is a path from h to any node in S
 - There is no edge from any node outside S to any node in S other than h
Entries and Exits

• In a loop
 — An entry node is one with some predecessor outside the loop
 — An exit node is one that has a successor outside the loop

• Corollary: A loop may have multiple exit nodes, but only one entry node
Loop Terminology

preheader

entry edge

head

back edge

loop

tail

exit edge
Reducible Flow Graphs

- In a reducible flow graph, any two loops are either nested or disjoint
- Roughly, to discover if a flow graph is reducible, repeatedly delete edges and collapse together pairs of nodes \((x,y)\) where \(x\) is the only predecessor of \(y\)
- If the graph can be reduced to a single node it is reducible
 - Caution: this is the “powerpoint” version of the definition – see a good compiler book for the careful details
Example: Is this Reducible?
Example: Is this Reducible?
Reducible Flow Graphs in Practice

- Common control-flow constructs yield reducible flow graphs
 - if-then[-else], while, do, for, break(!)
- A C function without goto will always be reducible
- Many dataflow analysis algorithms are very efficient on reducible graphs, but...
- We don’t need to assume reducible control-flow graphs to handle loops
Finding Loops in Flow Graphs

- We use dominators for this
- Recall
 - Every control flow graph has a unique start node s_0
 - Node x dominates node y if every path from s_0 to y must go through x
 - A node x dominates itself
Calculating Dominator Sets

• $D[n]$ is the set of nodes that dominate n
 - $D[s_0] = \{ s_0 \}$
 - $D[n] = \{ n \} \cup (\cap_{p \in \text{pred}[n]} D[p])$
• Set up an iterative analysis as usual to solve this
 - Except initially each $D[n]$ must be all nodes in the graph – updates make these sets smaller if changed
Example

Dominator

Node Dom
1 1
2 1, 2
3 1, 2, 3
4 1, 2, 4
5 1, 2, 4, 5
6 1, 2, 4, 6
7 1, 2, 4, 7
8 1, 2, 4, 5, 8
9 1, 2, 4, 5, 8, 9
10 1, 2, 4, 5, 8, 9, 10
11 1, 2, 4, 7, 11
12 1, 2, 4, 7, 11, 12

Dominator

Node Dom
1 1
2 2
3 2
4 2
5 4
6 4
7 4
8 5
9 8
10 9
11 7
12 11

Loop nest tree

UW CSE P 501 Winter 2016 U-17
Immediate Dominators

• Every node n has a single immediate dominator $\text{idom}(n)$
 – $\text{idom}(n)$ dominates n
 – $\text{idom}(n)$ differs from n – i.e., strictly dominates
 – $\text{idom}(n)$ does not dominate any other strict dominator of n
 • i.e., strictly dominates and is nearest dominator
• Fact (or, theorem): If a dominates n and b dominates n, then either a dominates b or b dominates a
 $:\therefore \text{idom}(n)$ is unique
Dominator Tree

- A *dominator tree* is constructed from a flowgraph by drawing an edge from every node in \(n \) to idom\((n) \)
 - This will be a tree. Why?
Back Edges & Loops

- A flow graph edge from a node n to a node h that dominates n is a back edge
- For every back edge there is a corresponding subgraph of the flow graph that is a loop
Natural Loops

• If h dominates n and $n \rightarrow h$ is a back edge, then the *natural loop* of that back edge is the set of nodes x such that
 — h dominates x
 — There is a path from x to n not containing h
• h is the *header* of this loop
• Standard loop optimizations can cope with loops whether they are natural or not
Inner Loops

- Inner loops are more important for optimization because most execution time is expected to be spent there.
- If two loops share a header, it is hard to tell which one is “inner”
 - Common way to handle this is to merge natural loops with the same header.
Inner (nested) loops

• Suppose
 – A and B are loops with headers a and b
 – $a \neq b$
 – b is in A

• Then
 – The nodes of B are a proper subset of A
 – B is nested in A, or B is the *inner loop*
Loop-Nest Tree

• Given a flow graph G
 ✓ 1. Compute the dominators of G
 ✓ 2. Construct the dominator tree
 ✓ 3. Find the natural loops (thus all loop-header nodes)
 ✓ 4. For each loop header h, merge all natural loops of h into a single loop: $\text{loop}[h]$
 5. Construct a tree of loop headers s.t. h_1 is above h_2 if h_2 is in $\text{loop}[h_1]$

UW CSE P 501 Winter 2016

24
Loop-Nest Tree details

- Leaves of this tree are the innermost loops
- Need to put all non-loop nodes somewhere
 - Convention: lump these into the root of the loop-nest tree
Loop Preheader

• Often we need a place to park code right before the beginning of a loop
• Easy if there is a single node preceding the loop header h
 — But this isn’t the case in general
• So insert a *preheader* node p
 — Include an edge p→h
 — Change all edges x→h to be x→p
Loop-Invariant Computations

- Idea: If \(x := a_1 \text{ op } a_2 \) always does the same thing each time around the loop, we’d like to \textit{hoist} it and do it once outside the loop.
- But can’t always tell if \(a_1 \) and \(a_2 \) will have the same value.
 - Need a conservative (safe) approximation.
Loop-Invariant Computations

- \(d: x := a_1 \text{ op } a_2\) is loop-invariant if for each \(a_i\)
 - \(a_i\) is a constant, or
 - All the definitions of \(a_i\) that reach \(d\) are outside the loop, or
 - Only one definition of \(a_i\) reaches \(d\), and that definition is loop invariant

- Use this to build an iterative algorithm
 - Base cases: constants and operands defined outside the loop
 - Then: repeatedly find definitions with loop-invariant operands
Hoisting

- Assume that $d: x := a_1 \text{ op } a_2$ is loop invariant. We can hoist it to the loop preheader if
 - d dominates all loop exits where x is live-out, and
 - There is only one definition of x in the loop, and
 - x is not live-out of the loop preheader

- Need to modify this if $a_1 \text{ op } a_2$ could have side effects or raise an exception
Hoisting: Possible?

- **Example 1**

 L0: t := 0
 L1: i := i + 1
 d: t := a op b
 M[i] := t
 if i < n goto L1
 L2: x := t

- **Example 2**

 L0: t := 0
 L1: if i ≥ n goto L2
 i := i + 1
 d: t := a op b
 M[i] := t
 goto L1
 L2: x := t
Hoisting: Possible?

- Example 3

 L0: t := 0
 L1: i := i + 1
 d: t := a op b
 M[i] := t
 t := 0
 M[j] := t
 if i < n goto L1
 L2: x := t

- Example 4

 L0: t := 0
 L1: M[j] := t
 i := i + 1
 d: t := a op b
 M[i] := t
 if i < n goto L1
 L2: x := t
Induction Variables

- Suppose inside a loop
 - Variable i is incremented or decremented
 - Variable j is set to $i \times c + d$ where c and d are loop-invariant
- Then we can calculate j’s value without using i
 - Whenever i is incremented by a, increment j by $c \times a$
Example

- Original

 \[
 \begin{align*}
 s &:= 0 \\
 i &:= 0 \\
 L1: \text{ if } i &\geq n \text{ goto } L2 \\
 j &:= i*4 \\
 k &:= j+a \\
 x &:= M[k] \\
 s &:= s+x \\
 i &:= i+1 \\
 \text{goto } L1
 \\
 L2: &
 \end{align*}
 \]

- To optimize, do...

 - Induction-variable analysis to discover \(i \) and \(j \) are related induction variables
 - Strength reduction to replace \(*4 \) with an addition
 - Induction-variable elimination to replace \(i \geq n \)
 - Assorted copy propagation
Result

- Original

 \[
 \begin{align*}
 s &:= 0 \\
 i &:= 0 \\
 L1: & \text{ if } i \geq n \text{ goto } L2 \\
 j &:= i*4 \\
 k &:= j+a \\
 x &:= M[k] \\
 s &:= s+x \\
 i &:= i+1 \\
 \text{goto } L1
 \end{align*}
 \]

- Transformed

 \[
 \begin{align*}
 s &:= 0 \\
 k' &:= a \\
 b &:= n*4 \\
 c &:= a+b \\
 L1: & \text{ if } k' \geq c \text{ goto } L2 \\
 x &:= M[k'] \\
 s &:= s+x \\
 k' &:= k'+4 \\
 \text{goto } L1
 \end{align*}
 \]

Details are somewhat messy – see your favorite compiler book
Basic and Derived Induction Variables

• Variable i is a *basic induction variable* in loop L with header h if the only definitions of i in L have the form $i := i \pm c$ where c is loop invariant.

• Variable k is a *derived induction variable* in L if:
 — There is only one definition of k in L of the form $k := j \cdot c$ or $k := j + d$ where j is an induction variable and c, d are loop-invariant, and
 — if j is a derived variable in the family of i, then:
 • The only definition of j that reaches k is the one in the loop, and
 • there is no definition of i on any path between the definition of j and the definition of k.
Optimizing Induction Variables

• Strength reduction: if a derived induction variable is defined with \(j:=i^*c \), try to replace it with an addition inside the loop

• Elimination: after strength reduction some induction variables are not used or are only compared to loop-invariant variables; delete them

• Rewrite comparisons: If a variable is used only in comparisons against loop-invariant variables and in its own definition, modify the comparison to use a related induction variable
Loop Unrolling

- If the body of a loop is small, much of the time is spent in the “increment and test” code.
- Idea: reduce overhead by unrolling – put two or more copies of the loop body inside the loop.
Loop Unrolling

- Basic idea: Given loop L with header node h and back edges $s_i \rightarrow h$
 1. Copy the nodes to make loop L' with header h' and back edges $s_i' \rightarrow h'$
 2. Change all back edges in L from $s_i \rightarrow h$ to $s_i \rightarrow h'$
 3. Change all back edges in L' from $s_i' \rightarrow h'$ to $s_i' \rightarrow h$
Unrolling Algorithm Results

• Before
 L1: x := M[i]
 s := s + x
 i := i + 4
 if i<n goto L1 else L2
 L2:

• After
 L1: x := M[i]
 s := s + x
 i := i + 4
 if i<n goto L1’ else L2
 L1’: x := M[i]
 s := s + x
 i := i + 4
 if i<n goto L1 else L2
 L2:
Hmmm....

- Not so great – just code bloat
- But: use induction variables and various loop transformations to clean up
After Some Optimizations

• Before

L1: x := M[i]
 s := s + x
 i := i + 4
 if i<n goto L1' else L2

L1': x := M[i]
 s := s + x
 i := i + 4
 if i<n goto L1 else L2

L2:

• After

L1: x := M[i]
 s := s + x
 x := M[i+4]
 s := s + x
 i := i + 8
 if i<n goto L1 else L2

L2:
Still Broken...

• But in a different, better(?) way
• Good code, but only correct if original number of loop iterations was even
• Fix: add an epilogue to handle the “odd” leftover iteration
Fixed

• Before
 L1: \(x := M[i] \)
 \(s := s + x \)
 \(x := M[i+4] \)
 \(s := s + x \)
 \(i := i + 8 \)
 if \(i < n \) goto L1 else L2
 L2:

• After
 if \(i < n-8 \) goto L1 else L2
 L1: \(x := M[i] \)
 \(s := s + x \)
 \(x := M[i+4] \)
 \(s := s + x \)
 \(i := i + 8 \)
 if \(i < n-8 \) goto L1 else L2
 L2: \(x := M[i] \)
 \(s := s + x \)
 \(i := i + 4 \)
 if \(i < n \) goto L2 else L3
 L3:
Postscript

• This example only unrolls the loop by a factor of 2
• More typically, unroll by a factor of K
 — Then need an epilogue that is a loop like the original that iterates up to K-1 times
Memory Hierarchies

- One of the great triumphs of computer design
- Effect is a large, fast memory
- Reality is a series of progressively larger, slower, cheaper stores, with frequently accessed data automatically staged to faster storage (cache, main storage, disk)
- Programmer/compiler typically treats it as one large store. (but not always the best idea)
- Hardware maintains cache coherency – most of the time
Intel Haswell Caches

L1 = 64 KB per core
L2 = 256 KB per core
L3 = 2-8 MB shared

Main Memory
Just How Slow is Operand Access?

<table>
<thead>
<tr>
<th>Access Type</th>
<th>Time Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction</td>
<td>~5 per cycle</td>
</tr>
<tr>
<td>Register</td>
<td>1 cycle</td>
</tr>
<tr>
<td>L1 CACHE</td>
<td>~4 cycles</td>
</tr>
<tr>
<td>L2 CACHE</td>
<td>~10 cycles</td>
</tr>
<tr>
<td>L3 CACHE (unshared line)</td>
<td>~40 cycles</td>
</tr>
<tr>
<td>DRAM</td>
<td>~100 ns</td>
</tr>
</tbody>
</table>
Memory Issues

- Byte load/store is often slower than whole (physical) word load/store
 - Unaligned access is often extremely slow
- Temporal locality: accesses to recently accessed data will usually find it in the (fast) cache
- Spatial locality: accesses to data near recently used data will usually be fast
 - “near” = in the same cache block
- But – alternating accesses to blocks that map to the same cache block will cause thrashing

CPU speed increases have out-paced increases in memory access times
- Memory access now often determines overall execution speed
- “Instruction count” is not the only performance metric for optimization
Data Alignment

• Data objects (structs) often are similar in size to a cache block (≈ 64 bytes)
 • Better if objects don’t span blocks
• Some strategies
 — Allocate objects sequentially; bump to next block boundary if useful
 — Allocate objects of same common size in separate pools (all size-2, size-4, etc.)
• Tradeoff: speed for some wasted space
Instruction Alignment

- Align frequently executed basic blocks on cache boundaries (or avoid spanning cache blocks)
- Branch targets (particularly loops) may be faster if they start on a cache line boundary
 - Often see multi-byte nops in optimized code as padding to align loop headers
 - How much depends on architecture (current Intel 16 bytes, current AMD 32 bytes)
- Try to move infrequent code (startup, exceptions) away from hot code
- Optimizing compiler may perform basic-block ordering
Loop Interchange

- Watch for bad cache patterns in inner loops; rearrange if possible
- Example

  ```
  for (i = 0; i < m; i++)
    for (j = 0; j < n; j++)
      for (k = 0; k < p; k++)
        a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]
  ```

 - $b[i,j+1,k]$ is reused in the next two iterations, but will have been flushed from the cache by the k loop
Loop Interchange

• Solution for this example: interchange j and k loops

 for (i = 0; i < m; i++)

 for (k = 0; k < p; k++)
 for (j = 0; j < n; j++)
 \[a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k] \]

 – Now \(b[i,j+1,k] \) will be used three times on each cache load

 – Safe here because loop iterations are independent
Loop Interchange

• Need to construct a data-dependency graph showing information flow between loop iterations

• For example, iteration \((j,k)\) depends on iteration \((j',k')\) if \((j',k')\) computes values used in \((j,k)\) or stores values overwritten by \((j,k)\)
 – If there is a dependency and loops are interchanged, we could get different results – so can’t do it
Blocking

- Consider matrix multiply

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++) {
 c[i,j] = 0.0;
 for (k = 0; k < n; k++)
 c[i,j] = c[i,j] + a[i,k]*b[k,j]
 }

- If a, b fit in the cache together, great!
- If they don’t, then every b[k,j] reference will be a cache miss
- Loop interchange (i<-j) won’t help; then every a[i,k] reference would be a miss
Blocking

- Solution: reuse rows of A and columns of B while they are still in the cache
- Assume the cache can hold $2^c n$ matrix elements ($1 < c < n$)
- Calculate $c \times c$ blocks of C using c rows of A and c columns of B
Blocking

• Calculating $c \times c$ blocks of C

 for ($i = i_0; i < i_0+c; i++$)

 for ($j = j_0; j < j_0+c; j++$) {

 $c[i,j] = 0.0$;

 for ($k = 0; k < n; k++$)

 $c[i,j] = c[i,j] + a[i,k] * b[k,j]$

 }
Blocking

- Then nest this inside loops that calculate successive $c \times c$ blocks

```
for (i0 = 0; i0 < n; i0+=c)
  for (j0 = 0; j0 < n; j0+=c)
    for (i = i0; i < i0+c; i++)
      for (j = j0; j < j0+c; j++) {
        c[i,j] = 0.0;
        for (k = 0; k < n; k++)
          c[i,j] = c[i,j] + a[i,k]*b[k,j]
      }
```
Parallelizing Code

• There is a long literature about how to rearrange loops for better locality and to detect parallelism

• Some starting points
 ✓ — Latest edition of *Dragon book*, ch. 11
 ✓ — Allen & Kennedy *Optimizing Compilers for Modern Architectures*
 ✓ — Wolfe, *High-Performance Compilers for Parallel Computing*