Agenda

• Dataflow analysis: a framework and algorithm for many common compiler analyses
• Initial example: dataflow analysis for common subexpression elimination
• Other analysis problems that work in the same framework
• Some of these are optimizations we’ve seen, but more formally and with details
The Story So Far...

• Redundant expression elimination
 — Local Value Numbering
 — Superlocal Value Numbering
 • Extends VN to EBBs
 • SSA-like namespace
 — Dominator VN Technique (DVNT)
• All of these propagate along forward edges
• None are global
 — In particular, can’t handle back edges (loops)
Dominator Value Numbering

- Most sophisticated algorithm so far
- Still misses some opportunities
- Can’t handle loops
Available Expressions

- Goal: use dataflow analysis to find common subexpressions whose range spans basic blocks
- Idea: calculate *available expressions* at beginning of each basic block
- Avoid re-evaluation of an available expression – use a copy operation
“Available” and Other Terms

- An expression e is *defined* at point p in the CFG if its value is computed at p
 - Sometimes called *definition site*
- An expression e is *killed* at point p if one of its operands is defined at p
 - Sometimes called *kill site*
- An expression e is *available* at point p if every path leading to p contains a prior definition of e and e is not killed between that definition and p
Available Expression Sets

- To compute available expressions, for each block b, define
 - $\text{AVAIL}(b)$ – the set of expressions available on entry to b
 - $\text{NKILL}(b)$ – the set of expressions not killed in b
 - i.e., all expressions in the program except for those killed in b
 - $\text{DEF}(b)$ – the set of expressions defined in b and not subsequently killed in b
Computing Available Expressions

- AVAIL(b) is the set
 \[AVAIL(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]
 - preds(b) is the set of b’s predecessors in the CFG
 - The set of expressions available on entry to b is the set of expressions that were available at the end of every predecessor basic block x
 - The expressions available on exit from block b are those defined in b or available on entry to b and not killed in b

- This gives a system of simultaneous equations – a dataflow problem
Name Space Issues

- In previous value-numbering algorithms, we used a SSA-like renaming to keep track of versions
- In global dataflow problems, we use the original namespace
 - we require a+b have the same value along all paths to its use
 - If a or b is updated along any path to its use, then a+b has the “wrong” value
 - so original names are exactly what we want
- The KILL information captures when a value is no longer available
Computing Available Expressions

• Big Picture
 – Build control-flow graph
 – Calculate initial local data – DEF\(b\) and NKILL\(b\)
 • This only needs to be done once for each block \(b\) and depends only on the statements in \(b\)
 – Iteratively calculate AVAIL\(b\) by repeatedly evaluating equations until nothing changes
 • Another fixed-point algorithm
Computing DEF and NKILL (1)

- For each block b with operations $o_1, o_2, ..., o_k$
 - $\text{KILLED} = \emptyset$ // killed variables, not expressions
 - $\text{DEF}(b) = \emptyset$

 for $i = k$ to 1 // note: working back to front
 - assume o_i is “$x = y + z$”
 - if ($y \notin \text{KILLED}$ and $z \notin \text{KILLED}$)
 - add “$y + z$” to $\text{DEF}(b)$
 - add x to KILLED

...
Computing DEF and NKILL (2)

• After computing DEF and KILLED for a block b, compute set of all expressions in the program not killed in b

$$\underline{NKILL}(b) = \{ \text{all expressions} \}$$

for each expression e

for each variable $v \in e$

if $v \in \underline{KILLED}$ then

$$\underline{NKILL}(b) = \underline{NKILL}(b) - e$$
Example: Compute DEF and NKILL

1. \(j = 2 \times a \)
 \(k = 2 \times b \)
 DEF = \{ 2^a, 2^b \}
 NKILL = \text{exprs w/o } j \text{ or } k

2. \(x = a + b \)
 b = c + d
 m = 5 \times n
 DEF = \{ 5^n, c+d \}
 NKILL = \text{exprs w/o } m, x, b

3. \(c = 5 \times n \)
 DEF = \{ 5^n \}
 NKILL = \text{exprs w/o } c

4. \(h = 2 \times a \)
 DEF = \{ 2^a \}
 NKILL = \text{exprs w/o } h
Computing Available Expressions

Once DEF(b) and NKILL(b) are computed for all blocks b

\[\text{Worklist} = \{ \text{all blocks } b_i \}\]
while (Worklist ≠ ∅)
 remove a block b from Worklist
 recompute AVAIL(b)
 if AVAIL(b) changed
 Worklist = Worklist ∪ successors(b)
Example: Find Available Expressions

$$\text{AVAIL}(b) = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))))$$

DEF = \{\text{5n, c+d}\}
NKILL = exprs w/o m, x, b

- j = 2 * a
- k = 2 * b

DEF = \{\text{2*a, 2*b}\}
NKILL = exprs w/o j or k

- DEF = \{\text{2*a}\}
- NKILL = exprs w/o h

- DEF = \{\text{5n}\}
- NKILL = exprs w/o c

- x = a + b
- b = c + d
- m = 5 * n

- c = 5 * n
Example: Find Available Expressions

\[\text{AVAIL}(b) = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))) \]

\[j = 2 \times a \]
\[k = 2 \times b \]

AVAIL = \{ \}
DEF = \{ 2*a, 2*b \}
NKILL = exprs w/o j or k

DEF = \{ 5*n, c + d \}
NKILL = exprs w/o m, x, b

x = a + b
b = c + d
m = 5 * n

DEF = \{ 5*n \}
NKILL = exprs w/o c

h = 2 * a

DEF = \{ 2*a \}
NKILL = exprs w/o h

\[\text{DEF} = \{ 5*n, c + d \} \]
\[\text{NKILL} = \text{exprs w/o m, x, b} \]

\[\text{DEF} = \{ 5*n \} \]
\[\text{NKILL} = \text{exprs w/o c} \]

\[\text{DEF} = \{ 2*a \} \]
\[\text{NKILL} = \text{exprs w/o h} \]

\[= \text{in worklist} \]
\[= \text{processing} \]
Example: Find Available Expressions

$$AVAIL(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (AVAIL(x) \cap \text{NKILL}(x))))$$

AVAIL = \{\}

DEF = \{2*a, 2*b\}

NKILL = exprs w/o j or k

j = 2 * a

k = 2 * b

DEF = \{5*n, c+d\}

NKILL = exprs w/o m, x, b

x = a + b

b = c + d

m = 5 * n

c = 5 * n

DEF = \{5*n\}

NKILL = exprs w/o c

h = 2 * a

AVAIL = \{5*n\}

DEF = \{2*a\}

NKILL = exprs w/o h
Example: Find Available Expressions

\[\text{AVAIL}(b) = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

\[
\begin{align*}
\text{AVAIL} & = \{ 2^*a, 2^*b \} \\
\text{DEF} & = \{ 5^*n, c+d \} \\
\text{NKILL} & = \text{exprs w/o m, x, b}
\end{align*}
\]

\[
\begin{align*}
x & = a + b \\
b & = c + d \\
m & = 5^*n
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} & = \{ 5^*n \} \\
\text{DEF} & = \{ 2^*a \} \\
\text{NKILL} & = \text{exprs w/o h}
\end{align*}
\]

\[
\begin{align*}
j & = 2^*a \\
k & = 2^*b
\end{align*}
\]

\[
\begin{align*}
c & = 5^*n \\
\text{DEF} & = \{ 5^*n \} \\
\text{NKILL} & = \text{exprs w/o c}
\end{align*}
\]

\[
\begin{align*}
h & = 2^*a
\end{align*}
\]

\[
\text{ANN} = \text{in worklist} \\
\text{YEL} = \text{processing}
\]
Example: Find Available Expressions

\[\text{AVAIL}(b) = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

Graph:
- \(j = 2 \ast a \)
- \(k = 2 \ast b \)
- \(x = a + b \)
- \(b = c + d \)
- \(m = 5 \ast n \)
- \(c = 5 \ast n \)
- \(h = 2 \ast a \)

- AVAIL = \{ 2\ast a, 2\ast b \}
- DEF = \{ 5\ast n, c+d \}
- NKILL = \text{exprs w/o m, x, b}

- AVAIL = \{ 2\ast a \}
- DEF = \{ 5\ast n \}
- NKILL = \text{exprs w/o c}

Legend:
- Green = in worklist
- Yellow = processing
Example: Find Available Expressions

\[\text{AVAIL}(b) = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

\[
\begin{align*}
\text{AVAIL} &= \{ \} \\
\text{DEF} &= \{ 2^*a, 2^*b \} \\
\text{NKILL} &= \text{exprs w/o } j \text{ or } k
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 2^*a, 2^*b \} \\
\text{DEF} &= \{ 5^*n, c+d \} \\
\text{NKILL} &= \text{exprs w/o } m, x, b
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 2^*a, 2^*b \} \\
\text{DEF} &= \{ 5^*n \} \\
\text{NKILL} &= \text{exprs w/o } c
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 5^*n, 2^*a \} \\
\text{DEF} &= \{ 2^*a \} \\
\text{NKILL} &= \text{exprs w/o } h
\end{align*}
\]

- \(\text{in worklist} \)
- \(\text{processing} \)
Example: Find Available Expressions

\[\text{AVAIL}(b) = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

\[
\begin{align*}
j &= 2 \times a \\
k &= 2 \times b
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ \} \\
\text{DEF} &= \{ 2 \times a, 2 \times b \} \\
\text{NKILL} &= \text{exprs w/o j or k}
\end{align*}
\]

\[
\begin{align*}
x &= a + b \\
b &= c + d \\
m &= 5 \times n
\end{align*}
\]

\[
\begin{align*}
h &= 2 \times a
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 2 \times a, 2 \times b \} \\
\text{DEF} &= \{ 5 \times n \} \\
\text{NKILL} &= \text{exprs w/o c}
\end{align*}
\]

\[
\begin{align*}
x &= a + b \\
b &= c + d \\
m &= 5 \times n
\end{align*}
\]

\[
\begin{align*}
h &= 2 \times a
\end{align*}
\]

\[
\begin{align*}
\text{AVAIL} &= \{ 5 \times n, 2 \times a \} \\
\text{DEF} &= \{ 2 \times a \} \\
\text{NKILL} &= \text{exprs w/o h}
\end{align*}
\]

And the common subexpression is???
Example: Find Available Expressions

\[\text{AVAIL(b)} = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

1. \(j = 2 \times a \)
2. \(k = 2 \times b \)
 - AVAIL = \{ \}
 - DEF = \{ 2*a, 2*b \}
 - NKILL = exprs w/o j or k

3. AVAIL = \{ 2*a, 2*b \}
 - x = a + b
 - b = c + d
 - m = 5 * n
 - DEF = \{ 5*n, c+d \}
 - NKILL = exprs w/o m, x, b

4. AVAIL = \{ 2*a, 2*b \}
 - c = 5 * n
 - DEF = \{ 5*n \}
 - NKILL = exprs w/o c

5. AVAIL = \{ 5*n, 2*a \}
 - h = 2 * a
 - DEF = \{ 2*a \}
 - NKILL = exprs w/o h

- Light green = in worklist
- Yellow = processing

UW CSE P 501 Winter 2016
Comparing Algorithms

- LVN – Local Value Numbering
- SVN – Superlocal Value Numbering
- DVN – DominatoT-based Value Numbering
- GRE – Global Redundancy Elimination
Comparing Algorithms (2)

- LVN => SVN => DVN form a strict hierarchy – later algorithms find a superset of previous information
- Global RE finds a somewhat different set
 - Discovers e+f in F (computed in both D and E)
 - Misses identical values if they have different names (e.g.,
 - a+b and c+d when a=c and b=d)
 - Value Numbering catches this
Scope of Analysis

- Larger context (EBBs, regions, global, interprocedural) sometimes helps
 - More opportunities for optimizations
- But not always
 - Introduces uncertainties about flow of control
 - Usually only allows weaker analysis
 - Sometimes has unwanted side effects
 - Can create additional pressure on registers, for example
Code Replication

- Sometimes replicating code increases opportunities – modify the code to create larger regions with simple control flow
- Two examples
 - Cloning
 - Inline substitution
Cloning

• Idea: duplicate blocks with multiple predecessors

• Tradeoff
 – More local optimization possibilities – larger blocks, fewer branches
 – But: larger code size, may slow down if it interacts badly with cache
Original VN Example

\[
\begin{align*}
m &= a + b \\
n &= a + b \\
p &= c + d \\
r &= c + d \\
q &= a + b \\
r &= c + d \\
e &= b + 18 \\
s &= a + b \\
u &= e + f \\
e &= a + 17 \\
t &= c + d \\
u &= e + f \\
v &= a + b \\
w &= c + d \\
x &= e + f \\
y &= a + b \\
z &= c + d \\
\end{align*}
\]
Example with cloning
 Inline Substitution

• Problem: an optimizer has to treat a procedure call as if it (could have) modified all globally reachable data
 — Plus there is the basic expense of calling the procedure

• Inline Substitution: replace each call site with a copy of the called function body
Inline Substitution Issues

• Pro
 — More effective optimization – better local context and don’t need to invalidate local assumptions
 — Eliminate overhead of normal function call

• Con
 ✓ — Potential code bloat
 ✓ — Need to manage recompilation when either caller or callee changes
Dataflow analysis

• Available expressions are an example of a dataflow analysis problem
• Many similar problems can be expressed in a similar framework
• Only the first part of the story – once we’ve discovered facts, we then need to use them to improve code
Characterizing Dataflow Analysis

• All of these algorithms involve sets of facts about each basic block b
 - $\text{IN}(b)$ – facts true on entry to b
 - $\text{OUT}(b)$ – facts true on exit from b
 - $\text{GEN}(b)$ – facts created and not killed in b
 - $\text{KILL}(b)$ – facts killed in b

• These are related by the equation
 - $\nabla \text{OUT}(b) = \text{GEN}(b) \cup (\text{IN}(b) - \text{KILL}(b))$
 - Solve this iteratively for all blocks
 - Sometimes information propagates forward; sometimes backward
Dataflow Analysis (1)

- A collection of techniques for compile-time reasoning about run-time values
- Almost always involves building a graph
 - Trivial for basic blocks
 - Control-flow graph or derivative for global problems
 - Call graph or derivative for whole-program problems
Dataflow Analysis (2)

- Usually formulated as a set of *simultaneous equations* (dataflow problem)
 - Sets attached to nodes and edges
 - Need a lattice (or semilattice) to describe values
 - In particular, has an appropriate operator to combine values and an appropriate “bottom” or minimal value
Dataflow Analysis (3)

- Desired solution is usually a *meet over all paths* (MOP) solution
 - “What is true on every path from entry”
 - “What can happen on any path from entry”
 - Usually relates to safety of optimization
Dataflow Analysis (4)

- Limitations
 - Precision – “up to symbolic execution”
 - Assumes all paths taken
 - Sometimes cannot afford to compute full solution
 - Arrays – classic analysis treats each array as a single fact
 - Pointers – difficult, expensive to analyze
 - Imprecision rapidly adds up
 - But gotta do it to effectively optimize things like C/C++

- For scalar values we can quickly solve simple problems
Example: Live Variable Analysis

- A variable v is *live* at point p iff there is *any* path from p to a use of v along which v is not redefined.

- Some uses:
 - Register allocation – only live variables need a register
 - Eliminating useless stores – if variable not live at store, then stored variable will never be used
 - Detecting uses of uninitialized variables – if live at declaration (before initialization) then it might be used uninitialized
 - Improve SSA construction – only need Φ-function for variables that are live in a block (later)
Liveness Analysis Sets

- For each block b, define
 - $\checkmark - use[b] = \text{variable used in } b \text{ before any def}$
 - $\triangleright - def[b] = \text{variable defined in } b \& \text{ not killed}$
 - $in[b] = \text{variables live on entry to } b$
 - $out[b] = \text{variables live on exit from } b$
Equations for Live Variables

• Given the preceding definitions, we have
 \[\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \]
 \[\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s] \]

• Algorithm
 – Set \(\text{in}[b] = \text{out}[b] = \emptyset \)
 – Update in, out until no change
Example (1 stmt per block)

- Code

\[
\begin{align*}
 a & := 0 \\
 \text{L: } b & := a+1 \\
 c & := c+b \\
 a & := b+2 \\
 \text{if } a < N \text{ goto L} \\
 \text{return } c
\end{align*}
\]

\[
\begin{align*}
1: & a := 0 \\
2: & b := a+1 \\
3: & c := c+b \\
4: & a := b+2 \\
5: & a < N \\
6: & \text{return } c
\end{align*}
\]

\[
in[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b])
\]

\[
\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\]
Calculation

Table

<table>
<thead>
<tr>
<th>block</th>
<th>use</th>
<th>def</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td></td>
<td>c</td>
<td>c</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>a/c</td>
<td>a/c</td>
<td></td>
<td>a/c</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>a/c</td>
<td>b,c</td>
<td>a/c</td>
<td>b,c</td>
<td></td>
<td>b,c</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>b,c</td>
<td>c</td>
<td>b,c</td>
<td>c</td>
<td>b,c</td>
<td>b,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>b</td>
<td>b,c</td>
<td>a/c</td>
<td>b,c</td>
<td>a/c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>a</td>
<td>a/c</td>
<td>c</td>
<td>a/c</td>
<td>c</td>
<td></td>
</tr>
</tbody>
</table>

Flowchart

1: a := 0
2: b := a + 1
3: c := c + b
4: a := b + 2
5: a < N
6: return c

\[\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \]
\[\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s] \]
Calculation

<table>
<thead>
<tr>
<th>block</th>
<th>use</th>
<th>def</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td>--</td>
<td>--</td>
<td>c</td>
<td>--</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>--</td>
<td>c</td>
<td>a,c</td>
<td>a,c</td>
<td>a,c</td>
<td>a,c</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>a</td>
<td>a,c</td>
<td>b,c</td>
<td>a,c</td>
<td>b,c</td>
<td>b,c</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>b,c</td>
<td>c</td>
<td>b,c</td>
<td>b,c</td>
<td>b,c</td>
<td>b,c</td>
<td>b,c</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b</td>
<td>b,c</td>
<td>a,c</td>
<td>b,c</td>
<td>a,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>--</td>
<td>a</td>
<td>a,c</td>
<td>c</td>
<td>a,c</td>
<td>c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: a := 0
2: b := a + 1
3: c := c + b
4: a := b + 2
5: a < N
6: return c

\[
\begin{align*}
\text{in}[b] &= \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \\
\text{out}[b] &= \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\end{align*}
\]
Equations for Live Variables v2

- Many problems have more than one formulation. For example, Live Variables...

- Sets
 - \(\text{USED}(b) \) – variables used in \(b \) before being defined in \(b \)
 - \(\text{NOTDEF}(b) \) – variables not defined in \(b \)
 - \(\text{LIVE}(b) \) – variables live on \textit{exit} from \(b \)

- Equation
 \[
 \text{LIVE}(b) = \bigcup_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{LIVE}(s) \cap \text{NOTDEF}(s))
 \]
Efficiency of Dataflow Analysis

• The algorithms eventually terminate, but the expected time needed can be reduced by picking a good order to visit nodes in the CFG
 – Forward problems – reverse postorder
 – Backward problems – postorder
Example: Reaching Definitions

- A definition d of some variable v reaches operation i iff i reads the value of v and there is a path from d to i that does not define v

- Uses
 - Find all of the possible definition points for a variable in an expression
Equations for Reaching Definitions

• Sets
 – $\text{DEFOUT}(b)$ – set of definitions in b that reach the end of b (i.e., not subsequently redefined in b)
 – $\text{SURVIVED}(b)$ – set of all definitions not obscured by a definition in b
 – $\text{REACHES}(b)$ – set of definitions that reach b

• Equation

\[
\text{REACHES}(b) = \bigcup_{p \in \text{preds}(b)} \text{DEFOUT}(p) \cup (\text{REACHES}(p) \cap \text{SURVIVED}(p))
\]
Example: Very Busy Expressions

- An expression e is considered *very busy* at some point p if e is evaluated and used along every path that leaves p, and evaluating e at p would produce the same result as evaluating it at the original locations.

- Uses
 - Code hoisting – move e to p (reduces code size; no effect on execution time)
Equations for Very Busy Expressions

• Sets
 – USED(b) – expressions used in b before they are killed
 – KILLED(b) – expressions redefined in b before they are used
 – VERYBUSY(b) – expressions very busy on exit from b

• Equation
 \[\text{VERYBUSY}(b) = \bigcap_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{VERYBUSY}(s) - \text{KILLED}(s)) \]
Using Dataflow Information

• A few examples of possible transformations...
Classic Common-Subexpression Elimination (CSE)

- In a statement \(s: t := x \text{ op } y \), if \(x \text{ op } y \) is available at \(s \) then it need not be recomputed.
- Analysis: compute \(\text{reaching expressions} \) i.e., statements \(n: v := x \text{ op } y \) such that the path from \(n \) to \(s \) does not compute \(x \text{ op } y \) or define \(x \) or \(y \).
Classic CSE Transformation

• If \(x \text{ op } y \) is defined at \(n \) and reaches \(s \)
 – Create new temporary \(w \)
 – Rewrite \(n: v := x \text{ op } y \) as
 \[
 n: w := x \text{ op } y
 \]
 \[
 n': v := w
 \]
 – Modify statement \(s \) to be
 \[
 s: t := w
 \]
 – (Rely on copy propagation to remove extra assignments that are not really needed)
Revisiting Example (w/slight addition)

\[
\begin{align*}
 j &= 2 \times a \\
 k &= 2 \times b \\
 x &= a + b \\
 b &= c + d \\
 m &= 5 \times n \\
 c &= 5 \times n \\
 h &= 2 \times a \\
 i &= 5 \times n \\
 \text{AVAIL} &= \{ \}
\end{align*}
\]
Revisiting Example (w/slight addition)

AVAIL = \{ 2a, 2b \}

\[
\begin{align*}
x &= a + b \\
b &= c + d \\
t2 &= 5 * n \\
m &= t2
\end{align*}
\]

AVAIL = \{ \}

AVAIL = \{ 2a, 2b \}

AVAIL = \{ 5n, 2a \}

AVAIL = \{ \}

AVAIL = \{ 2a, 2b \}
Then Apply Very Busy...

\[
\begin{align*}
\text{AVAIL} &= \{ 2a, 2b \} \\
& \quad \text{AVAIL} = \{ \} \\
& \quad \text{AVAIL} = \{ 2a, 2b \} \\
& \quad \text{AVAIL} = \{ 5n, 2a \}
\end{align*}
\]

\[
\begin{align*}
& \quad \text{AVAIL} = \{ \} \\
& \quad x = a + b \\
& \quad b = c + d \\
& \quad t2 = 5 \times n \\
& \quad m = t2 \\
& \quad h = t1 \\
& \quad i = t2
\end{align*}
\]
Constant Propagation

• Suppose we have
 – Statement d: t := c, where c is constant
 – Statement n that uses t

• If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t
Copy Propagation

• Similar to constant propagation
• Setup:
 – Statement d: t := z
 – Statement n uses(t)
• If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t
 – Recall that this can help remove dead assignments
Copy Propagation Tradeoffs

- Downside is that this can increase the lifetime of variable z and increase need for registers or memory traffic
- But it can expose other optimizations, e.g.,

 \[
 \begin{align*}
 a &:= y + z \\
 u &:= y \\
 c &:= u + z \quad \text{// copy propagation makes this } y + z \\
 \end{align*}
 \]

 - After copy propagation we can recognize the common subexpression
Dead Code Elimination

• If we have an instruction
 \[
 s: a := b \text{ op } c
 \]
 and \(a \) is not live-out after \(s \), then \(s \) can be eliminated
 – Provided it has no implicit side effects that are visible (output, exceptions, etc.)
 • If \(b \) or \(c \) are function calls, they have to be assumed to have unknown side effects unless the compiler can prove otherwise
Aliases

- A variable or memory location may have multiple names or *aliases*
 - Call-by-reference parameters
 - Variables whose address is taken (&x)
 - Expressions that dereference pointers (p.x, *p)
 - Expressions involving subscripts (a[i])
 - Variables in nested scopes
Aliases vs Optimizations

- Example:

 \[p.x := 5; \quad q.x := 7; \quad a := p.x; \]

 - Does reaching definition analysis show that the definition of \(p.x \) reaches \(a \)?
 - (Or: do \(p \) and \(q \) refer to the same variable/object?)
 - (Or: \(can \) \(p \) and \(q \) refer to the same thing?)
Aliases vs Optimizations

• Example
  ```c
  void f(int *p, int *q) {
      *p = 1; *q = 2;
      return *p;
  }
  ```
 – How do we account for the possibility that p and q might refer to the same thing?
 – Safe approximation: since it’s possible, assume it is true (but rules out a lot)
 • C programmers can use “restrict” to indicate no other pointer is an alias for this one
Types and Aliases (1)

• In Java, ML, MiniJava, and others, if two variables have incompatible types they cannot be names for the same location
 — Also helps that programmer cannot create arbitrary pointers to storage in these languages
Types and Aliases (2)

• Strategy: Divide memory locations into alias classes based on type information (every type, array, record field is a class)

• Implication: need to propagate type information from the semantics pass to optimizer
 — Not normally true of a minimally typed IR

• Items in different alias classes cannot refer to each other
Aliases and Flow Analysis

• Idea: Base alias classes on points where a value is created
 – Every new/malloc and each local or global variable whose address is taken is an alias class
 – Pointers can refer to values in multiple alias classes (so each memory reference is to a set of alias classes)
 – Use to calculate “may alias” information (e.g., p “may alias” q at program point s)
Using “may-alias” information

- Treat each alias class as a “variable” in dataflow analysis problems
- Example: framework for available expressions
 - Given statement $s: M[a] := b,$

 \[
 \text{gen}[s] = \{ \}
 \]

 \[
 \text{kill}[s] = \{ M[x] \mid \text{a may alias } x \text{ at } s \}
 \]
May-Alias Analysis

- Without alias analysis, #2 kills M[t] since x and t might be related
- If analysis determines that “x may-alias t” is false, M[t] is still available at #3; can eliminate the common subexpression and use copy propagation

Code

1: u := M[t]
2: M[x] := r
3: w := M[t]
4: b := u+w
Where are we now?

• Dataflow analysis is the core of classical optimizations
 – Although not the only possible story
• Still to explore:
 – Discovering and optimizing loops
 – SSA – Static Single Assignment form