CSE P 501 – Compilers

Dataflow Analysis
Hal Perkins
Winter 2016
Agenda

• Dataflow analysis: a framework and algorithm for many common compiler analyses
• Initial example: dataflow analysis for common subexpression elimination
• Other analysis problems that work in the same framework
• Some of these are optimizations we’ve seen, but more formally and with details
The Story So Far...

• Redundant expression elimination
 – Local Value Numbering
 – Superlocal Value Numbering
 • Extends VN to EBBs
 • SSA-like namespace
 – Dominator VN Technique (DVNT)
• All of these propagate along forward edges
• None are global
 – In particular, can’t handle back edges (loops)
Dominator Value Numbering

- Most sophisticated algorithm so far
- Still misses some opportunities
- Can’t handle loops
Available Expressions

• Goal: use dataflow analysis to find common subexpressions whose range spans basic blocks
• Idea: calculate *available expressions* at beginning of each basic block
• Avoid re-evaluation of an available expression – use a copy operation
“Available” and Other Terms

- An expression e is *defined* at point p in the CFG if its value is computed at p
 - Sometimes called *definition site*
- An expression e is *killed* at point p if one of its operands is defined at p
 - Sometimes called *kill site*
- An expression e is *available* at point p if every path leading to p contains a prior definition of e and e is not killed between that definition and p
Available Expression Sets

• To compute available expressions, for each block \(b \), define
 – \(\text{AVAIL}(b) \) – the set of expressions available on entry to \(b \)
 – \(\text{NKILL}(b) \) – the set of expressions not killed in \(b \)
 • i.e., all expressions in the program except for those killed in \(b \)
 – \(\text{DEF}(b) \) – the set of expressions defined in \(b \) and not subsequently killed in \(b \)
Computing Available Expressions

• AVAIL(b) is the set
 \[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]
 – preds(b) is the set of b’s predecessors in the CFG
 – The set of expressions available on entry to b is the set of expressions that were available at the end of every predecessor basic block x
 – The expressions available on exit from block b are those defined in b or available on entry to b and not killed in b

• This gives a system of simultaneous equations – a dataflow problem
Name Space Issues

• In previous value-numbering algorithms, we used a SSA-like renaming to keep track of versions

• In global dataflow problems, we use the original namespace
 – we require a+b have the same value along all paths to its use
 – If a or b is updated along any path to its use, then a+b has the “wrong” value
 – so original names are exactly what we want

• The KILL information captures when a value is no longer available
Computing Available Expressions

• Big Picture
 – Build control-flow graph
 – Calculate initial local data – DEF(b) and NKILL(b)
 • This only needs to be done once for each block b and depends only on the statements in b
 – Iteratively calculate AVAIL(b) by repeatedly evaluating equations until nothing changes
 • Another fixed-point algorithm
Computing DEF and NKILL (1)

• For each block b with operations $o_1, o_2, ..., o_k$:

 KILLED = \emptyset // killed variables, not expressions

 DEF(b) = \emptyset

 for $i = k$ to 1 // note: working back to front
 assume o_i is “$x = y + z$”
 if ($y \notin$ KILLED and $z \notin$ KILLED)
 add “$y + z$” to DEF(b)
 add x to KILLED

...
Computing DEF and NKILL (2)

• After computing DEF and KILLED for a block b, compute set of all expressions in the program not killed in b

$$NKILL(b) = \{ \text{all expressions} \}$$

for each expression e

for each variable $v \in e$

if $v \in \text{KILLED}$ then

$$NKILL(b) = NKILL(b) - e$$
Example: Compute DEF and NKILL

\[
\begin{align*}
 j &= 2 \times a \\
 k &= 2 \times b \\
 x &= a + b \\
 b &= c + d \\
 m &= 5 \times n \\
 h &= 2 \times a \\
 c &= 5 \times n
\end{align*}
\]

DEF = \{ 2*a, 2*b \}
\[\text{NKILL} = \text{exprs w/o } j \text{ or } k\]
\[\text{DEF} = \{ 5*n \}\]
\[\text{NKILL} = \text{exprs w/o } c\]
\[\text{DEF} = \{ 2*a \}\]
\[\text{NKILL} = \text{exprs w/o } h\]

\[\text{DEF} = \{ 5*n, c+d \}\]
\[\text{NKILL} = \text{exprs w/o } m, x, b\]
Computing Available Expressions

Once DEF(b) and NKILL(b) are computed for all blocks b

Worklist = \{ all blocks \ b_i \}

while (Worklist \neq \emptyset)

 remove a block \ b \ from Worklist

 recompute AVAIL(b)

 if AVAIL(b) changed

 Worklist = Worklist \cup \text{successors}(b)
Example: Find Available Expressions

\[
\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))
\]

\[
\begin{align*}
 j &= 2 \times a \\
 k &= 2 \times b \\
 \text{DEF} &= \{ 2a, 2b \} \\
 \text{NKILL} &= \text{exprs w/o } j \text{ or } k
\end{align*}
\]

\[
\begin{align*}
 x &= a + b \\
 b &= c + d \\
 m &= 5 \times n \\
 \text{DEF} &= \{ 5n, c+d \} \\
 \text{NKILL} &= \text{exprs w/o } m, x, b
\end{align*}
\]

\[
\begin{align*}
 c &= 5 \times n \\
 \text{DEF} &= \{ 5n \} \\
 \text{NKILL} &= \text{exprs w/o } c
\end{align*}
\]

\[
\begin{align*}
 h &= 2 \times a \\
 \text{DEF} &= \{ 2a \} \\
 \text{NKILL} &= \text{exprs w/o } h
\end{align*}
\]

= in worklist

= processing
Example: Find Available Expressions

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

- **AVAIL** = \{ \}
 - **DEF** = \{ 2*a, 2*b \}
 - **NKILL** = exprs w/o j or k

- **DEF** = \{ 5*n, c+d \}
 - **NKILL** = exprs w/o m, x, b

- **DEF** = \{ 2*a \}
 - **NKILL** = exprs w/o h

- **DEF** = \{ 5*n \}
 - **NKILL** = exprs w/o c

\[
\begin{align*}
 j &= 2 * a \\
 k &= 2 * b \\
 x &= a + b \\
 b &= c + d \\
 m &= 5 * n \\
 c &= 5 * n \\
 h &= 2 * a
\end{align*}
\]
Example: Find Available Expressions

\[
AVAIL(b) = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (AVAIL(x) \cap \text{NKILL}(x)))
\]

\[
\begin{align*}
 j &= 2 \times a \\
 k &= 2 \times b \\
 \text{AVAIL} &= \{ \} \\
 \text{DEF} &= \{ 2a, 2b \} \\
 \text{NKILL} &= \text{exprs w/o j or k}
\end{align*}
\]

\[
\begin{align*}
 \text{DEF} &= \{ 5n, c+d \} \\
 \text{NKILL} &= \text{exprs w/o m, x, b}
\end{align*}
\]

\[
\begin{align*}
 x &= a + b \\
 b &= c + d \\
 m &= 5 \times n \\
 \text{c} &= 5 \times n \\
 \text{AVAIL} &= \{ 5n \} \\
 \text{DEF} &= \{ 5n \} \\
 \text{NKILL} &= \text{exprs w/o c}
\end{align*}
\]

\[
\begin{align*}
 h &= 2 \times a \\
 \text{AVAIL} &= \{ 5n \} \\
 \text{DEF} &= \{ 2a \} \\
 \text{NKILL} &= \text{exprs w/o h}
\end{align*}
\]

\[
\begin{align*}
 m &= 5 \times n \\
 &= \text{in worklist}
\end{align*}
\]

\[
\begin{align*}
 \text{b} &= c + d \\
 \text{m} &= 5 \times n \\
 \text{c} &= 5 \times n \\
 \text{h} &= 2 \times a \\
 \text{DEF} &= \{ 2a, 2b \} \\
 \text{NKILL} &= \text{exprs w/o j or k}
\end{align*}
\]

\[
\begin{align*}
 \text{x} &= a + b \\
 \text{b} &= c + d \\
 \text{m} &= 5 \times n \\
 \text{c} &= 5 \times n \\
 \text{h} &= 2 \times a \\
 \text{AVAIL} &= \{ 5n \} \\
 \text{DEF} &= \{ 5n \} \\
 \text{NKILL} &= \text{exprs w/o c}
\end{align*}
\]

\[
\begin{align*}
 \text{m} &= 5 \times n \\
 \text{c} &= 5 \times n \\
 \text{h} &= 2 \times a \\
 \text{AVAIL} &= \{ 5n \} \\
 \text{DEF} &= \{ 2a \} \\
 \text{NKILL} &= \text{exprs w/o h}
\end{align*}
\]
Example: Find Available Expressions

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

- \(j = 2 * a \)
- \(k = 2 * b \)

\(\text{AVAIL} = \{ \} \)
\(\text{DEF} = \{ 2a, 2b \} \)
\(\text{NKILL} = \text{exprs w/o j or k} \)

- \(x = a + b \)
- \(b = c + d \)
- \(m = 5 * n \)

\(\text{AVAIL} = \{ 2a, 2b \} \)
\(\text{DEF} = \{ 5n, c+d \} \)
\(\text{NKILL} = \text{exprs w/o m, x, b} \)

- \(c = 5 * n \)

\(\text{AVAIL} = \{ 5n \} \)
\(\text{DEF} = \{ 5n \} \)
\(\text{NKILL} = \text{exprs w/o c} \)

- \(h = 2 * a \)

\(\text{AVAIL} = \{ 5n \} \)
\(\text{DEF} = \{ 2a \} \)
\(\text{NKILL} = \text{exprs w/o h} \)

= in worklist
= processing
Example: Find Available Expressions

$$AVAIL(b) = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (AVAIL(x) \cap \text{NKILL}(x)))$$

- $j = 2 \times a$
- $k = 2 \times b$
- $x = a + b$
- $b = c + d$
- $m = 5 \times n$
- $h = 2 \times a$

AVAIL = \{ 2*a, 2*b \}
DEF = \{ 2*a, 2*b \}
NKILL = exprs w/o j or k

AVAIL = \{ 2*a, 2*b \}
DEF = \{ 5*n \}
NKILL = exprs w/o c

AVAIL = \{ 2*a, 2*b \}
DEF = \{ 5*n \}
NKILL = exprs w/o m, x, b

AVAIL = \{ 5*n \}
DEF = \{ 2*a \}
NKILL = exprs w/o h

= in worklist
= processing
Example: Find Available Expressions

\[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

- AVAIL = \{ \}
- DEF = \{ 2*a, 2*b \}
- NKILL = exprs w/o j or k

- AVAIL = \{ 2*a, 2*b \}
- DEF = \{ 5*n, c+d \}
- NKILL = exprs w/o m, x, b

- AVAIL = \{ 2*a, 2*b \}
- DEF = \{ 5*n \}
- NKILL = exprs w/o c

- AVAIL = \{ 2*a, 2*b \}
- DEF = \{ 5*n, 2*a \}
- NKILL = exprs w/o h

- AVAIL = \{ 2*a, 2*b \}
- DEF = \{ 5*n, c+d \}
- NKILL = exprs w/o m, x, b

\[j = 2 * a \]
\[k = 2 * b \]
\[x = a + b \]
\[b = c + d \]
\[m = 5 * n \]
\[c = 5 * n \]
\[h = 2 * a \]

- = in worklist
- = processing
Example: Find Available Expressions

$$AVAIL(b) = \cap_{x \in \text{preds}(b)} (DEF(x) \cup (AVAIL(x) \cap NKILL(x)))$$

AVAIL = \{ \}
DEF = \{ 2a, 2b \}
NKILL = \text{exprs w/o j or k}

AVAIL = \{ 2a, 2b \}
DEF = \{ 5n \}
NKILL = \text{exprs w/o c}

AVAIL = \{ 2a, 2b \}
DEF = \{ 5n, 2a \}
NKILL = \text{exprs w/o h}

And the common subexpression is???
Example: Find Available Expressions

$\text{AVAIL}(b) = \cap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))$

$\text{AVA}\text{IL} = \{ \}$
$\text{DEF} = \{ 2\text{a}, 2\text{b} \}$
$\text{NKILL} = \text{exprs w/o j or k}$

$\text{AVA}\text{IL} = \{ 2\text{a}, 2\text{b} \}$
$\text{DEF} = \{ 5\text{n}, \text{c+d} \}$
$\text{NKILL} = \text{exprs w/o m, x, b}$

$\text{AVA}\text{IL} = \{ 2\text{a}, 2\text{b} \}$
$\text{DEF} = \{ 5\text{n} \}$
$\text{NKILL} = \text{exprs w/o c}$

$\text{AVA}\text{IL} = \{ 2\text{a}, 2\text{b} \}$
$\text{DEF} = \{ 5\text{n}, 2\text{a} \}$
$\text{NKILL} = \text{exprs w/o h}$

AVAIL = {2*a, 2*b}
DEF = {2*a, 2*b}
NKILL = exprs w/o j or k

AVAIL = {5*n, c+d}
DEF = {5*n}
NKILL = exprs w/o c

AVAIL = {5*n, 2*a}
DEF = {2*a}
NKILL = exprs w/o h

\(j = 2 \times a\)
\(k = 2 \times b\)
\(x = a + b\)
\(b = c + d\)
\(m = 5 \times n\)
\(c = 5 \times n\)
\(m = 5 \times n\)
\(h = 2 \times a\)

\(= \text{in worklist}\)
\(= \text{processing}\)

UW CSE P 501 Winter 2016
Comparing Algorithms

- LVN – Local Value Numbering
- SVN – Superlocal Value Numbering
- DVN – DominatoT-based Value Numbering
- GRE – Global Redundancy Elimination

\[m = a + b \]
\[n = a + b \]
\[p = c + d \]
\[r = c + d \]
\[q = a + b \]
\[r = c + d \]
\[e = b + 18 \]
\[s = a + b \]
\[u = e + f \]
\[e = a + 17 \]
\[t = c + d \]
\[u = e + f \]
\[v = a + b \]
\[w = c + d \]
\[x = e + f \]
\[y = a + b \]
\[z = c + d \]
Comparing Algorithms (2)

- LVN \Rightarrow SVN \Rightarrow DVN form a strict hierarchy – later algorithms find a superset of previous information
- Global RE finds a somewhat different set
 - Discovers e+f in F (computed in both D and E)
 - Misses identical values if they have different names (e.g., a+b and c+d when a=c and b=d)
 - Value Numbering catches this
Scope of Analysis

• Larger context (EBBs, regions, global, interprocedural) sometimes helps
 – More opportunities for optimizations

• But not always
 – Introduces uncertainties about flow of control
 – Usually only allows weaker analysis
 – Sometimes has unwanted side effects
 • Can create additional pressure on registers, for example
Code Replication

• Sometimes replicating code increases opportunities – modify the code to create larger regions with simple control flow

• Two examples
 – Cloning
 – Inline substitution
Cloning

• Idea: duplicate blocks with multiple predecessors

• Tradeoff
 – More local optimization possibilities – larger blocks, fewer branches
 – But: larger code size, may slow down if it interacts badly with cache
Original VN Example

A

m = a + b
n = a + b

B

p = c + d
r = c + d

C

q = a + b
r = c + d

e = b + 18
s = a + b
u = e + f

D

ev = a + b
w = c + d
x = e + f

E

e = a + 17
t = c + d
u = e + f

F

v = a + b
w = c + d
x = e + f

G
y = a + b
z = c + d
Example with cloning

A
- m = a + b
 - n = a + b

B
- p = c + d
 - q = a + b
 - r = c + d
 - y = a + b
 - z = c + d

C
- q = a + b
 - r = c + d

D
- e = b + 18
 - s = a + b
 - u = e + f
 - v = a + b
 - w = c + d
 - x = e + f
 - y = a + b
 - z = c + d

E
- e = a + 17
 - t = c + d
 - u = e + f
 - v = a + b
 - w = c + d
 - x = e + f
 - y = a + b
 - z = c + d

UW CSE P 501 Winter 2016
Inline Substitution

- Problem: an optimizer has to treat a procedure call as if it (could have) modified all globally reachable data
 - Plus there is the basic expense of calling the procedure

- Inline Substitution: replace each call site with a copy of the called function body
Inline Substitution Issues

• Pro
 – More effective optimization – better local context and don’t need to invalidate local assumptions
 – Eliminate overhead of normal function call
• Con
 – Potential code bloat
 – Need to manage recompilation when either caller or callee changes
Dataflow analysis

• Available expressions are an example of a dataflow analysis problem
• Many similar problems can be expressed in a similar framework
• Only the first part of the story – once we’ve discovered facts, we then need to use them to improve code
Characterizing Dataflow Analysis

• All of these algorithms involve sets of facts about each basic block b
 IN(b) – facts true on entry to b
 OUT(b) – facts true on exit from b
 GEN(b) – facts created and not killed in b
 KILL(b) – facts killed in b

• These are related by the equation
 OUT(b) = GEN(b) \cup (IN(b) – KILL(b))
 – Solve this iteratively for all blocks
 – Sometimes information propagates forward; sometimes backward
Dataflow Analysis (1)

• A collection of techniques for compile-time reasoning about run-time values
• Almost always involves building a graph
 – Trivial for basic blocks
 – Control-flow graph or derivative for global problems
 – Call graph or derivative for whole-program problems
Dataflow Analysis (2)

• Usually formulated as a set of *simultaneous equations* (dataflow problem)
 – Sets attached to nodes and edges
 – Need a lattice (or semilattice) to describe values
 • In particular, has an appropriate operator to combine values and an appropriate “bottom” or minimal value
Dataflow Analysis (3)

• Desired solution is usually a meet over all paths (MOP) solution
 – “What is true on every path from entry”
 – “What can happen on any path from entry”
 – Usually relates to safety of optimization
Dataflow Analysis (4)

• Limitations
 – Precision – “up to symbolic execution”
 • Assumes all paths taken
 – Sometimes cannot afford to compute full solution
 – Arrays – classic analysis treats each array as a single fact
 – Pointers – difficult, expensive to analyze
 • Imprecision rapidly adds up
 • But gotta do it to effectively optimize things like C/C++

• For scalar values we can quickly solve simple problems

Example: Live Variable Analysis

• A variable \(v \) is *live* at point \(p \) iff there is *any* path from \(p \) to a use of \(v \) along which \(v \) is not redefined

• Some uses:
 – Register allocation – only live variables need a register
 – Eliminating useless stores – if variable not live at store, then stored variable will never be used
 – Detecting uses of uninitialized variables – if live at declaration (before initialization) then it might be used uninitialized
 – Improve SSA construction – only need \(\Phi \)-function for variables that are live in a block (later)
Liveness Analysis Sets

• For each block b, define
 – $\text{use}[b] = \text{variable used in } b \text{ before any def}$
 – $\text{def}[b] = \text{variable defined in } b \text{ & not killed}$
 – $\text{in}[b] = \text{variables live on entry to } b$
 – $\text{out}[b] = \text{variables live on exit from } b$
Equations for Live Variables

• Given the preceding definitions, we have

\[
\begin{align*}
\text{in}[b] &= \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \\
\text{out}[b] &= \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\end{align*}
\]

• Algorithm
 – Set \(\text{in}[b] = \text{out}[b] = \emptyset\)
 – Update \text{in}, \text{out} until no change
Example (1 stmt per block)

- **Code**

 a := 0
 L: b := a+1
 c := c+b
 a := b*2
 if a < N goto L
 return c
Calculation

<table>
<thead>
<tr>
<th>block</th>
<th>use</th>
<th>def</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
<th>out</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: \(a:= 0\)
2: \(b:=a+1\)
3: \(c:=c+b\)
4: \(a:=b+2\)
5: \(a < N\)
6: return \(c\)

\[\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b])\]
\[\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]\]
Calculation

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline
\text{block} & \text{use} & \text{def} & \text{out} & \text{in} & \text{out} & \text{in} & \text{out} & \text{in} \\
\hline
 6 & c & -- & -- & c & -- & c & & \\
\hline
 5 & a & -- & c & a,c & a,c & a,c & & \\
\hline
 4 & b & a & a,c & b,c & a,c & b,c & & \\
\hline
 3 & b,c & c & b,c & b,c & b,c & b,c & & \\
\hline
 2 & a & b & b,c & a,c & b,c & a,c & & \\
\hline
 1 & -- & a & a,c & c & a,c & c & & \\
\hline
\end{array}
\]

1: \(a := 0 \)

2: \(b := a + 1 \)

3: \(c := c + b \)

4: \(a := b + 2 \)

5: \(a < N \)

6: return \(c \)

\[
in[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \\
\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s]
\]
Equations for Live Variables v2

- Many problems have more than one formulation. For example, Live Variables...

- Sets
 - USED(b) – variables used in b before being defined in b
 - NOTDEF(b) – variables not defined in b
 - LIVE(b) – variables live on exit from b

- Equation
 \[\text{LIVE}(b) = \bigcup_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{LIVE}(s) \cap \text{NOTDEF}(s)) \]
Efficiency of Dataflow Analysis

• The algorithms eventually terminate, but the expected time needed can be reduced by picking a good order to visit nodes in the CFG
 – Forward problems – reverse postorder
 – Backward problems – postorder
Example: Reaching Definitions

• A definition d of some variable v reaches operation i iff i reads the value of v and there is a path from d to i that does not define v

• Uses
 – Find all of the possible definition points for a variable in an expression
Equations for Reaching Definitions

• Sets
 – DEFOUT(b) – set of definitions in b that reach the end of b (i.e., not subsequently redefine in b)
 – SURVIVED(b) – set of all definitions not obscured by a definition in b
 – REACHES(b) – set of definitions that reach b

• Equation
 \[\text{REACHES}(b) = \bigcup_{p \in \text{preds}(b)} \text{DEFOUT}(p) \cup (\text{REACHES}(p) \cap \text{SURVIVED}(p)) \]
Example: Very Busy Expressions

• An expression e is considered very busy at some point p if e is evaluated and used along every path that leaves p, and evaluating e at p would produce the same result as evaluating it at the original locations.

• Uses
 – Code hoisting – move e to p (reduces code size; no effect on execution time)
Equations for Very Busy Expressions

• Sets
 – USED(b) – expressions used in b before they are killed
 – KILLED(b) – expressions redefined in b before they are used
 – VERYBUSY(b) – expressions very busy on exit from b

• Equation
 \[
 \text{VERYBUSY}(b) = \bigcap_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{VERYBUSY}(s) - \text{KILLED}(s))
 \]
Using Dataflow Information

• A few examples of possible transformations...
Classic Common-Subexpression Elimination (CSE)

• In a statement s: t := x op y, if x op y is available at s then it need not be recomputed
• Analysis: compute *reaching expressions* i.e., statements n: v := x op y such that the path from n to s does not compute x op y or define x or y
Classic CSE Transformation

- If $x \text{ op } y$ is defined at n and reaches s
 - Create new temporary w
 - Rewrite $n: v := x \text{ op } y$ as
 - $n: w := x \text{ op } y$
 - $n': v := w$
 - Modify statement s to be
 - $s: t := w$

 - (Rely on copy propagation to remove extra assignments that are not really needed)
Revisiting Example (w/slight addition)

\[j = 2 \times a \]
\[k = 2 \times b \]
\[x = a + b \]
\[b = c + d \]
\[m = 5 \times n \]
\[h = 2 \times a \]
\[i = 5 \times n \]

\[c = 5 \times n \]

AVAIL = \{ \}

AVAIL = \{ 2*a, 2*b \}

AVAIL = \{ 2*a, 2*b \}

AVAIL = \{ 5*n, 2*a \}
Revisiting Example (w/slight addition)

\[
\begin{align*}
\text{AVAIL} &= \{2a, 2b\} \\
t_1 &= 2 \times a \\
j &= t_1 \\
k &= 2 \times b \\
x &= a + b \\
b &= c + d \\
t_2 &= 5 \times n \\
c &= t_2 \\
m &= t_2 \\
h &= t_1 \\
i &= t_2 \\
\text{AVAIL} &= \{5n, 2a\}
\end{align*}
\]
Then Apply Very Busy...

\[
\begin{align*}
t1 &= 2 \times a \\
j &= t1 \\
k &= 2 \times b \\
t2 &= 5 \times n
\end{align*}
\]

\[
\begin{align*}
x &= a + b \\
b &= c + d \\
t2 &= 5 \times n \\
m &= t2
\end{align*}
\]

\[
\begin{align*}
h &= t1 \\
i &= t2 \\
t2 &= 5 \times n \\
c &= t2
\end{align*}
\]

AVAIL = \{ 2a, 2b \}
AVAIL = \{ 5n, 2a \}
AVAIL = \{ }
Constant Propagation

• Suppose we have
 – Statement d: t := c, where c is constant
 – Statement n that uses t

• If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t
Copy Propagation

• Similar to constant propagation

• Setup:
 – Statement d: t := z
 – Statement n uses t

• If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t
 – Recall that this can help remove dead assignments
Copy Propagation Tradeoffs

• Downside is that this can increase the lifetime of variable z and increase need for registers or memory traffic

• But it can expose other optimizations, e.g.,

\[
\begin{align*}
a &:= y + z \\
u &:= y \\
c &:= u + z \quad // \text{copy propagation makes this } y + z
\end{align*}
\]

– After copy propagation we can recognize the common subexpression
Dead Code Elimination

• If we have an instruction
 \[s: a := b \text{ op } c \]
 and \(a \) is not live-out after \(s \), then \(s \) can be eliminated
 – Provided it has no implicit side effects that are visible (output, exceptions, etc.)
 • If \(b \) or \(c \) are function calls, they have to be assumed to have unknown side effects unless the compiler can prove otherwise
Aliases

- A variable or memory location may have multiple names or **aliases**
 - Call-by-reference parameters
 - Variables whose address is taken (\&x)
 - Expressions that dereference pointers (p.x, *p)
 - Expressions involving subscripts (a[i])
 - Variables in nested scopes
Aliases vs Optimizations

- Example:
 \[
 p.x := 5; \quad q.x := 7; \quad a := p.x;
 \]

 - Does reaching definition analysis show that the definition of \(p.x \) reaches \(a \)?
 - (Or: do \(p \) and \(q \) refer to the same variable/object?)
 - (Or: \(can \) \(p \) and \(q \) refer to the same thing?)
Aliases vs Optimizations

• Example

```c
void f(int *p, int *q) {
    *p = 1; *q = 2;
    return *p;
}
```

– How do we account for the possibility that `p` and `q` might refer to the same thing?

– Safe approximation: since it’s possible, assume it is true (but rules out a lot)

 • C programmers can use “restrict” to indicate no other pointer is an alias for this one
Types and Aliases (1)

• In Java, ML, MiniJava, and others, if two variables have incompatible types they cannot be names for the same location
 – Also helps that programmer cannot create arbitrary pointers to storage in these languages
Types and Aliases (2)

• Strategy: Divide memory locations into *alias classes* based on type information (every type, array, record field is a class)

• Implication: need to propagate type information from the semantics pass to optimizer
 – Not normally true of a minimally typed IR

• Items in different alias classes cannot refer to each other
Aliases and Flow Analysis

• Idea: Base alias classes on points where a value is created
 – Every new/malloc and each local or global variable whose address is taken is an alias class
 – Pointers can refer to values in multiple alias classes (so each memory reference is to a set of alias classes)
 – Use to calculate “may alias” information (e.g., p “may alias” q at program point s)
Using “may-alias” information

• Treat each alias class as a “variable” in dataflow analysis problems

• Example: framework for available expressions
 – Given statement s: M[a]:=b,

 gen[s] = { }

 kill[s] = { M[x] | a may alias x at s }
May-Alias Analysis

- Without alias analysis, #2 kills $M[t]$ since x and t might be related.
- If analysis determines that “x may-alias t” is false, $M[t]$ is still available at #3; can eliminate the common subexpression and use copy propagation.

Code

1: $u := M[t]$
2: $M[x] := r$
3: $w := M[t]$
4: $b := u + w$
Where are we now?

• Dataflow analysis is the core of classical optimizations
 – Although not the only possible story
• Still to explore:
 – Discovering and optimizing loops
 – SSA – Static Single Assignment form