CSE P 501 – Compilers

LR Parser Construction
Hal Perkins
Winter 2016
Agenda

- LR(0) state construction
- FIRST, FOLLOW, and nullable
- Variations: SLR, LR(1), LALR (1)
LR State Machine

- Idea: Build a DFA that recognizes handles
 - Language generated by a CFG is generally not regular, but
 - Language of viable prefixes for a CFG is regular
 - So a DFA can be used to recognize handles
 - LR Parser reduces when DFA accepts a handle
Prefixes, Handles, &c (review)

\[G = \langle \Sigma, \mathcal{A}, \mathcal{R}, S \rangle \]

- If \(S \) is the start symbol of a grammar \(G \),
 - If \(S \Rightarrow^* \alpha \), then \(\alpha \) is a **sentential form** of \(G \)
 - \(\gamma \) is a **viable prefix** of \(G \) if there is some derivation
 \[S \Rightarrow^*_\text{rm} \alpha A w \Rightarrow^*_\text{rm} \alpha \beta w \]
 and \(\gamma \) is a prefix of \(\alpha \beta \).
 - The occurrence of \(\beta \) in \(\alpha \beta w \) is a **handle** of \(\alpha \beta w \)

- An **item** is a marked production (a . at some position in the right hand side)
 - \([A ::= . X Y] \) [\(A ::= X . Y] \) [\(A ::= X Y .] \)
Building the LR(0) States

- Example grammar

 \[S' ::= S \$
 \]
 \[S ::= (L)
 \]
 \[S ::= x
 \]
 \[L ::= S
 \]
 \[L ::= L, S
 \]

 - We add a production \(S' \) with the original start symbol followed by end of file (\$)

 - We accept if we reach the end of this production

 - Question: What language does this grammar generate?
Start of LR Parse

• Initially
 — Stack is empty
 — Input is the right hand side of S', i.e., S
 — Initial configuration is $[S' ::= . S]$
 — But, since position is just before S, we are also just before anything that can be derived from S

0. $S' ::= S$
1. $S ::= (L)$
2. $S ::= x$
3. $L ::= S$
4. $L ::= L , S$
A state is just a set of items
- Start: an initial set of items
- Completion (or closure): additional productions whose left hand side appears to the right of the dot in some item already in the state
Shift Actions (1)

\[
\begin{align*}
S' &::= S \\
S &::= (L) \\
S &::= . x
\end{align*}
\]

0. $S'::= S$
1. $S::= (L)$
2. $S::= x$
3. $L::= S$
4. $L::= L , S$

- To shift past the x, add a new state with appropriate item(s), including their closure
 - In this case, a single item; the closure adds nothing
 - This state will lead to a reduction since no further shift is possible
Shift Actions (2)

- If we shift past the , we are at the beginning of L.
- The closure adds all productions that start with L, which also requires adding all productions starting with S.
Goto Actions

- Once we reduce S, we’ll pop the rhs from the stack exposing the first state. Add a *goto* transition on S for this.
Basic Operations

- *Closure* \((S)\)
 - Adds all items implied by items already in \(S\)

- *Goto* \((I, X)\)
 - \(I\) is a set of items
 - \(X\) is a grammar symbol (terminal or non-terminal)
 - *Goto* moves the dot past the symbol \(X\) in all appropriate items in set \(I\)
Closure Algorithm

- \(\text{Closure}(S) = \)

 repeat
 for any item \([A ::= \alpha \cdot B \beta] \) in \(S \)
 for all productions \(B ::= \gamma \)
 add \([B ::= . \gamma]\) to \(S \)
 until \(S \) does not change
 return \(S \)

- Classic example of a fixed-point algorithm
Goto Algorithm

• \(Goto \ (l, X) = \)

 set \(new \) to the empty set

 for each item \([A ::= \alpha \cdot X \ \beta]\) in \(l\)

 add \([A ::= \alpha X \cdot \beta]\) to \(new \)

 return \(Closure\ (new)\)

• This may create a new state, or may return an existing one
LR(0) Construction

- First, augment the grammar with an extra start production $S' ::= S \;$
- Let T be the set of states
- Let E be the set of edges
- Initialize T to $\text{Closure}([S' ::= . S \;])$
- Initialize E to empty
LR(0) Construction Algorithm

repeat
for each state l in T
 for each item $[A ::= \alpha \cdot X \beta]$ in l
 Let new be $Goto(l, X)$
 Add new to T if not present
 Add $l \xrightarrow{X} new$ to E if not present
until E and T do not change in this iteration

• Footnote: For symbol $\$, we don’t compute $goto(l, \$)$; instead, we make this an $accept$ action.
Example: States for

1. $S := (L)$
2. $S := x$
3. $L := S$
4. $L := L, S$
5. $S := (L)$
6. $L := S$
7. $S := (L)$
8. $L := (L)$
9. $S := (L)$
10. $S := L, S$
Building the Parse Tables (1)

- For each edge \(l \xrightarrow{X} j \)
 - if \(X \) is a terminal, put \(sj \) in column \(X \), row \(l \) of the action table (shift to state \(j \))
 - If \(X \) is a non-terminal, put \(gj \) in column \(X \), row \(l \) of the goto table (go to state \(j \))
Building the Parse Tables (2)

- For each state \(I \) containing an item \([S' ::= S . \]$], put \textit{accept} in column \$\ of row \(I \).
- Finally, for any state containing \([A ::= \gamma .]\) put action \textit{rn} (reduce) in every column of row \(I \) in the table, where \(n \) is the \textit{production} number (\textit{not} a state number).
Example: Tables for

<table>
<thead>
<tr>
<th></th>
<th>x () , $</th>
<th>S</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S' ::= S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>S ::= (L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S ::= x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>L ::= S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>L ::= L , S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>53 54</th>
<th></th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>r2</td>
<td>r2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r2</td>
<td>r2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>54</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>r3</td>
<td>r3</td>
<td>96</td>
</tr>
<tr>
<td>6</td>
<td>r3</td>
<td>r3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>r1</td>
<td>r1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>r1</td>
<td>r1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>r4</td>
<td>r4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>s3</td>
<td>s4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r4</td>
<td>r4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r4</td>
<td>r4</td>
<td></td>
</tr>
</tbody>
</table>

UW CSE P 501 Winter 2016
Where Do We Stand?

• We have built the LR(0) state machine and parser tables
 — No lookahead yet
 — Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same

• A grammar is LR(0) if its LR(0) state machine (equiv. parser tables) has no shift-reduce or reduce-reduce conflicts.
A Grammar that is not LR(0)

• Build the state machine and parse tables for a simple expression grammar

 $S ::= E \;\$
 $E ::= T + E$
 $E ::= T$
 $T ::= x$
LR(0) Parser for

0. S ::= E$
1. E ::= T + E
2. E ::= T
3. T ::= x

- State 3 is has two possible actions on +
 - shift 4, or reduce 2
 - Grammar is not LR(0)
How can we solve conflicts like this?

- Idea: look at the next symbol after the handle before deciding whether to reduce
- Easiest: SLR – Simple LR. Reduce only if next input terminal symbol could follow the nonterminal on the left of the production in some possible derivation(s)
- More complex: LR and LALR. Store lookahead symbols in items to keep track of what can follow a particular instance of a reduction
 - LALR used by YACC/Bison/CUP; we won’t examine in detail
 - see your favorite compiler book for explanations
SLR Parsers

• Idea: Use information about what can follow a non-terminal to decide if we should perform a reduction; don’t reduce if the next input symbol can’t follow the resulting non-terminal

• We need to be able to compute $\text{FOLLOW}(A)$ – the set of symbols that can follow A in any possible derivation
 – i.e., t is in $\text{FOLLOW}(A)$ if any derivation contains At
 – To compute this, we need to compute $\text{FIRST}(\gamma)$ for strings γ that can follow A
Calculating FIRST(γ)

- Sounds easy... If $\gamma = X Y Z$, then FIRST(γ) is FIRST(X), right?

 - But what if we have the rule $X ::= \varepsilon$?
 - In that case, FIRST(γ) includes anything that can follow X, i.e. FOLLOW(X), which includes FIRST(Y) and, if Y can derive ε, FIRST(Z), and if Z can derive ε, ...
 - So computing FIRST and FOLLOW involves knowing FIRST and FOLLOW for other symbols, as well as which ones can derive ε.
FIRST, FOLLOW, and nullable

- nullable(X) is true if X can derive the empty string
- Given a string γ of terminals and non-terminals, FIRST(γ) is the set of terminals that can begin any strings derived from γ
 - For SLR we only need this for single terminal or non-terminal symbols, not arbitrary strings γ
- FOLLOW(X) is the set of terminals that can immediately follow X in some derivation
- All three of these are computed together
Computing FIRST, FOLLOW, and nullable (1)

- Initialization
 set FIRST and FOLLOW to be empty sets
 set nullable to false for all non-terminals
 set FIRST[a] to a for all terminal symbols a

- Repeatedly apply four simple observations to update these sets
 - Stop when there are no further changes
 - Another fixed-point algorithm
Computing FIRST, FOLLOW, and nullable (2)

repeat
 for each production $X := Y_1 \ldots Y_k$
 if $Y_1 \ldots Y_k$ are all nullable (or if $k = 0$)
 set nullable[X] = true
 for each i from 1 to k and each j from $i+1$ to k
 if $Y_1 \ldots Y_i$ are all nullable (or if $i = 1$)
 add FIRST[Y_i] to FIRST[X]
 if $Y_{i+1} \ldots Y_k$ are all nullable (or if $i = k$)
 add FOLLOW[X] to FOLLOW[Y_i]
 if $Y_{i+1} \ldots Y_k$ are all nullable (or if $i+1 = j$)
 add FIRST[Y_j] to FOLLOW[Y_i]
Until FIRST, FOLLOW, and nullable do not change
Example

• Grammar

1. \(Z ::= d \)
2. \(Z ::= X Y Z \)
3. \(Y ::= \epsilon \)
4. \(Y ::= c \)
5. \(X ::= Y \)
6. \(X ::= a \)
LR(0) Reduce Actions (review)

• In a LR(0) parser, if a state contains a reduction, it is unconditional regardless of the next input symbol

• Algorithm:

 Initialize R to empty

 for each state l in T

 for each item $[A ::= \alpha .]$ in l

 add $(l, A ::= \alpha)$ to R
SLR Construction

• This is identical to LR(0) – states, etc., except for the calculation of reduce actions

• Algorithm:
 Initialize R to empty
 for each state I in T
 for each item $[A ::= \alpha.]$ in I
 for each terminal a in FOLLOW(A)
 add $(I, a, A ::= \alpha)$ to R
 – i.e., reduce α to A in state I only on lookahead a
SLR Parser for

0. $S ::= E \, \$$
1. $E ::= T \, + \, E$
2. $E ::= T$
3. $T ::= x$

\begin{array}{|c|c|c|}
\hline
x & + & $ \\
\hline
s5 & & g2 \\
\hline
r2 & s4,r2 & r2 \\
\hline
s5 & & g3 \\
\hline
r3 & r3 & r3 \\
\hline
r1 & r1 & r1 \\
\hline
\end{array}
On To LR(1)

- Many practical grammars are SLR
- LR(1) is more powerful yet
- Similar construction, but notion of an item is more complex, incorporating lookahead information
LR(1) Items

- An LR(1) item \([A ::= \alpha . [\beta, a]]\) is
 - A grammar production \((A ::= \alpha \beta)\)
 - A right hand side position (the dot)
 - A lookahead symbol (a)
- Idea: This item indicates that \(\alpha\) is the top of the stack and the next input is derivable from \(\beta a\).
- Full construction: see the book
LR(1) Tradeoffs

• LR(1)
 – Pro: extremely precise; largest set of grammars
 – Con: potentially very large parse tables with many states
LALR(1)

- Variation of LR(1), but merge any two states that differ only in lookahead

 - Example: these two would be merged

 \[A ::= x . , a \]
 \[A ::= x . , b \]
LALR(1) vs LR(1)

• LALR(1) tables can have many fewer states than LR(1)
 – Somewhat surprising result: will actually have same number of states as SLR parsers, even though LALR(1) is more powerful
 – After the merge step, acts like SLR parser with “smarter” FOLLOW sets (can be specific to particular handles)
• LALR(1) may have reduce conflicts where LR(1) would not (but in practice this doesn’t happen often)
• Most practical bottom-up parser tools are LALR(1) (e.g., yacc, bison, CUP, ...)
Language Hierarchies

unambiguous grammars

LL(k) LR(k)

LL(1) LR(1)

LALR(1)

SLR

LL(0) LR(0)

ambiguous grammars
Coming Attractions

Rest of Parsing...
• LL(k) Parsing – Top-Down
• Recursive Descent Parsers
 – What you can do if you want a parser in a hurry
Then...
• AST construction – what do do while you parse!
• Visitor Pattern – how to traverse ASTs for further processing (type checking, code generation, ...)