CSE P 501 – Compilers

LR Parser Construction
Hal Perkins
Winter 2016
Agenda

• LR(0) state construction
• FIRST, FOLLOW, and nullable
• Variations: SLR, LR(1), LALR
LR State Machine

• Idea: Build a DFA that recognizes handles
 – Language generated by a CFG is generally not regular, but
 – Language of viable prefixes for a CFG is regular
 • So a DFA can be used to recognize handles
 – LR Parser reduces when DFA accepts a handle
Prefixes, Handles, &c (review)

• If S is the start symbol of a grammar G,
 – If $S \Rightarrow^* \alpha$ then α is a *sentential form* of G
 – γ is a *viable prefix* of G if there is some derivation $S \Rightarrow^*_{rm} \alpha Aw \Rightarrow^*_{rm} \alpha\beta w$ and γ is a prefix of $\alpha\beta$.
 – The occurrence of β in $\alpha\beta w$ is a *handle* of $\alpha\beta w$

• An *item* is a marked production (a . at some position in the right hand side)
 – $[A ::= . X Y]$ $[A ::= X . Y]$ $[A ::= X Y .]$
Building the LR(0) States

• Example grammar

\[S' ::= S \, \$ \]
\[S ::= (\, L \,) \]
\[S ::= x \]
\[L ::= S \]
\[L ::= L \, , \, S \]

– We add a production \(S' \) with the original start symbol followed by end of file (\$)
 • We accept if we reach the end of this production

– Question: What language does this grammar generate?
Start of LR Parse

• Initially
 – Stack is empty
 – Input is the right hand side of S', i.e., S
 – Initial configuration is $[S' ::= . S]$
 – But, since position is just before S, we are also just before anything that can be derived from S

0. $S' ::= S$
1. $S ::= (L)$
2. $S ::= x$
3. $L ::= S$
4. $L ::= L , S$
Initial state

- A state is just a set of items
 - Start: an initial set of items
 - Completion (or closure): additional productions whose left hand side appears to the right of the dot in some item already in the state

\[
S' ::= . S$
S ::= . (L)
S ::= . x
\]

0. $S' ::= S$
1. $S ::= (L)$
2. $S ::= x$
3. $L ::= S$
4. $L ::= L, S$
Shift Actions (1)

- To shift past the x, add a new state with appropriate item(s), including their closure
 - In this case, a single item; the closure adds nothing
 - This state will lead to a reduction since no further shift is possible

0. $S'::= S$
1. $S::= (L)$
2. $S::= x$
3. $L::= S$
4. $L::= L, S$
Shift Actions (2)

- If we shift past the (, we are at the beginning of L
- The closure adds all productions that start with L, which also requires adding all productions starting with S

$$S' ::= . S \$$
$$S ::= . (L)$$
$$S ::= . x$$

$$S ::= (. L)$$
$$L ::= . L , S$$
$$L ::= . S$$
$$S ::= (. L)$$
$$S ::= . x$$

0. $S' ::= S \$$
1. $S ::= (L)$
2. $S ::= x$
3. $L ::= S$
4. $L ::= L , S$
Goto Actions

- Once we reduce S, we’ll pop the rhs from the stack exposing the first state. Add a \textit{goto} transition on S for this.
Basic Operations

• **Closure** \((S)\)
 – Adds all items implied by items already in \(S\)

• **Goto** \((I, X)\)
 – \(I\) is a set of items
 – \(X\) is a grammar symbol (terminal or non-terminal)
 – **Goto** moves the dot past the symbol \(X\) in all appropriate items in set \(I\)
Closure Algorithm

• Closure \((S) =\)

 repeat

 for any item \([A ::= \alpha \cdot B \beta]\) in \(S\)

 for all productions \(B ::= \gamma\)

 add \([B ::= \cdot \gamma]\) to \(S\)

 until \(S\) does not change

 return \(S\)

• Classic example of a fixed-point algorithm
Goto Algorithm

• \(\textit{Goto} \ (l, X) = \)

 set new to the empty set
 for each item \([A ::= \alpha \cdot X \ \beta] \) in \(l\)
 add \([A ::= \alpha X \cdot \beta] \) to new
 return \(\textit{Closure} \ (\textit{new} \)\)

• This may create a new state, or may return an existing one
LR(0) Construction

• First, augment the grammar with an extra start production \(S' ::= S \$ \)
• Let \(T \) be the set of states
• Let \(E \) be the set of edges
• Initialize \(T \) to \(\text{Closure} \left([S' ::= . S \$] \right) \)
• Initialize \(E \) to empty
LR(0) Construction Algorithm

repeat
 for each state I in T
 for each item $[A ::= \alpha \cdot X \beta]$ in I
 Let new be $Goto(I, X)$
 Add new to T if not present
 Add $I \xrightarrow{X} new$ to E if not present
 until E and T do not change in this iteration

• Footnote: For symbol $\$$, we don’t compute $goto(I, \$$); instead, we make this an accept action.
Example: States for

0. $S' ::= S\$
1. $S ::= (L)$
2. $S ::= x$
3. $L ::= S$
4. $L ::= L, S$
Building the Parse Tables (1)

• For each edge $I \xrightarrow{X} J$
 – if X is a terminal, put s_j in column X, row I of the action table (shift to state j)
 – If X is a non-terminal, put g_j in column X, row I of the goto table (go to state j)
Building the Parse Tables (2)

• For each state l containing an item $[S' ::= S \cdot \$]$, put \textit{accept} in column $\$ of row l

• Finally, for any state containing $[A ::= \gamma \cdot]$ put action \textit{rn} (reduce) in every column of row l in the table, where n is the \textit{production} number (\textit{not} a state number)
Example: Tables for

0. $S' ::= S$
1. $S ::= (L)$
2. $S ::= x$
3. $L ::= S$
4. $L ::= L, S$
Where Do We Stand?

• We have built the LR(0) state machine and parser tables
 – No lookahead yet
 – Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same

• A grammar is LR(0) if its LR(0) state machine (equiv. parser tables) has no shift-reduce or reduce-reduce conflicts.
A Grammar that is not LR(0)

• Build the state machine and parse tables for a simple expression grammar

\[S ::= E \ $ \]
\[E ::= T + E \]
\[E ::= T \]
\[T ::= x \]
LR(0) Parser for

0. \(S ::= E \)
1. \(E ::= T + E \)
2. \(E ::= T \)
3. \(T ::= x \)

- State 3 is has two possible actions on +
 - shift 4, or reduce 2
 - \(\therefore \) Grammar is not LR(0)
How can we solve conflicts like this?

• Idea: look at the next symbol after the handle before deciding whether to reduce

• Easiest: SLR – Simple LR. Reduce only if next input terminal symbol could follow the nonterminal on the left of the production in some possible derivation(s)

• More complex: LR and LALR. Store lookahead symbols in items to keep track of what can follow a particular instance of a reduction
 – LALR used by YACC/Bison/CUP; we won’t examine in detail
 – see your favorite compiler book for explanations
SLR Parsers

• Idea: Use information about what can follow a non-terminal to decide if we should perform a reduction; don’t reduce if the next input symbol can’t follow the resulting non-terminal

• We need to be able to compute FOLLOW(A) – the set of symbols that can follow A in any possible derivation
 – i.e., t is in FOLLOW(A) if any derivation contains At
 – To compute this, we need to compute FIRST(γ) for strings γ that can follow A
Calculating FIRST(γ)

• Sounds easy... If γ = X Y Z, then FIRST(γ) is FIRST(X), right?
 – But what if we have the rule X ::= ε?
 – In that case, FIRST(γ) includes anything that can follow X, i.e. FOLLOW(X), which includes FIRST(Y) and, if Y can derive ε, FIRST(Z), and if Z can derive ε, ...
 – So computing FIRST and FOLLOW involves knowing FIRST and FOLLOW for other symbols, as well as which ones can derive ε.
FIRST, FOLLOW, and nullable

• nullable(X) is true if X can derive the empty string

• Given a string γ of terminals and non-terminals, $\text{FIRST}(\gamma)$ is the set of terminals that can begin any strings derived from γ

 — For SLR we only need this for single terminal or non-terminal symbols, not arbitrary strings γ

• $\text{FOLLOW}(X)$ is the set of terminals that can immediately follow X in some derivation

• All three of these are computed together
Computing FIRST, FOLLOW, and nullable (1)

• Initialization
 set FIRST and FOLLOW to be empty sets
 set nullable to false for all non-terminals
 set FIRST[a] to a for all terminal symbols a

• Repeatedly apply four simple observations to update these sets
 – Stop when there are no further changes
 – Another fixed-point algorithm
Computing FIRST, FOLLOW, and nullable (2)

repeat
 for each production $X := Y_1 Y_2 \ldots Y_k$
 if $Y_1 \ldots Y_k$ are all nullable (or if $k = 0$)
 set $\text{nullable}[X] = \text{true}$
 for each i from 1 to k and each j from $i+1$ to k
 if $Y_1 \ldots Y_{i-1}$ are all nullable (or if $i = 1$)
 add $\text{FIRST}[Y_i]$ to $\text{FIRST}[X]$
 if $Y_{i+1} \ldots Y_k$ are all nullable (or if $i = k$)
 add $\text{FOLLOW}[X]$ to $\text{FOLLOW}[Y_i]$
 if $Y_{i+1} \ldots Y_{j-1}$ are all nullable (or if $i+1=j$)
 add $\text{FIRST}[Y_j]$ to $\text{FOLLOW}[Y_i]$
 Until FIRST, FOLLOW, and nullable do not change
Example

- Grammar

<table>
<thead>
<tr>
<th>nullable</th>
<th>FIRST</th>
<th>FOLLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z ::= d</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Z ::= X Y Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y ::= ε</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Y ::= c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X ::= Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X ::= a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LR(0) Reduce Actions (review)

- In a LR(0) parser, if a state contains a reduction, it is unconditional regardless of the next input symbol.

- Algorithm:

 Initialize \(R \) to empty

 for each state \(I \) in \(T \)

 for each item \([A := \alpha \ .]\) in \(I \)

 add \((I, A := \alpha)\) to \(R\)
SLR Construction

- This is identical to LR(0) – states, etc., except for the calculation of reduce actions
- Algorithm:

 Initialize R to empty
 for each state I in T
 for each item $[A ::= \alpha.]$ in I
 for each terminal a in $\text{FOLLOW}(A)$
 add $(I, a, A ::= \alpha)$ to R
 - i.e., reduce α to A in state I only on lookahead a
SLR Parser for

0. \(S ::= E \) $
1. \(E ::= T + E \)
2. \(E ::= T \)
3. \(T ::= x \)
On To LR(1)

• Many practical grammars are SLR
• LR(1) is more powerful yet
• Similar construction, but notion of an item is more complex, incorporating lookahead information
LR(1) Items

• An LR(1) item \([A ::= \alpha \cdot \beta, a]\) is
 – A grammar production \((A ::= \alpha\beta)\)
 – A right hand side position (the dot)
 – A lookahead symbol \((a)\)

• Idea: This item indicates that \(\alpha\) is the top of the stack and the next input is derivable from \(\beta a\).

• Full construction: see the book
LR(1) Tradeoffs

• LR(1)
 – Pro: extremely precise; largest set of grammars
 – Con: potentially very large parse tables with many states
LALR(1)

• Variation of LR(1), but merge any two states that differ only in lookahead
 – Example: these two would be merged

 \[A ::= x . , a \]

 \[A ::= x . , b \]
LALR(1) vs LR(1)

• LALR(1) tables can have many fewer states than LR(1)
 – Somewhat surprising result: will actually have same number of states as SLR parsers, even though LALR(1) is more powerful
 – After the merge step, acts like SLR parser with “smarter” FOLLOW sets (can be specific to particular handles)
• LALR(1) may have reduce conflicts where LR(1) would not (but in practice this doesn’t happen often)
• Most practical bottom-up parser tools are LALR(1) (e.g., yacc, bison, CUP, ...)

Language Heirarchies

![Diagram of language heirarchies showing the relationships between different types of grammars: ambiguous, unambiguous, LL(0), LL(1), LL(k), LR(0), LR(1), LR(k), LALR(1), SLR.](image)
Coming Attractions

Rest of Parsing...
• LL(k) Parsing – Top-Down
• Recursive Descent Parsers
 – What you can do if you want a parser in a hurry
Then...
• AST construction – what do do do while you parse!
• Visitor Pattern – how to traverse ASTs for further processing (type checking, code generation, ...)

UW CSE P 501 Winter 2016