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Agenda

 Dataflow analysis example – live variables
 Loop optimizations

 Dominators – discovering loops
 Loop invariant calculations
 Loop transformations

 A quick look at some memory hierarchy 
issues

 Largely based on material in Appel ch. 10, 17, 18,21; similar 
material in other books
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Live Variables

 Recall that two variables can be 
assigned to the same register if they 
are not alive at the same time

  We would like to analyze code to 
decide when variables are “live”

 Def. A variable is live if it holds a value 
that may be needed in the future
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Example (1 stmt per block)

 Code

a := 0

L: b := a+1

c := c+b

a := b*2

if a < N goto L

return c
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1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c



Live Ranges

 b: 2 -> 3, 3 -> 4

 a: 1 -> 2, and
4 -> 5 -> 2,
but not 2 -> 3 -> 4

 c: live on entry; live 
throughout

 Liveness analysis 
flows from the future 
to the past
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1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c



Liveness Analysis

 A variable is live on an edge if there is a 
path from that edge to a use that does 
not go through any definition

 In a block, a variable is

 Live-in if it is live on any in-edge

 Live-out if it is live on any out-edge
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Liveness Analysis Sets

 For each block b

 use[b] = variable used in b before any def

 def[b] = variable defined in b & not killed

 in[b] = variables live on entry to b

 out[b] = variables live on exit from b

 Note: slightly different from definitions for 
same problem in last week’s slides
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Dataflow equation

 Given the preceding definitions, we have

in[b] = use[b]  (out[b] – def[b])

out[b] = ssucc[b] in[s]

 Algorithm

 Set in[b] = out[b] = 

 Update in, out until no change

 Evaluation order: back to front is best 
given information flow
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Calculation
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1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c



Liveness & Register Allocation

 Liveness information is used to 
construct an interference graph

 If two variables are live at the same 
point in the program, they interfere, 
and cannot be in the same register

 Graph coloring starts with this 
information

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-10



Liveness in Larger Programs

 This example treated individual 
instructions as nodes

 Only information discovered was where 
operands were defined and used

 In general:
 Nodes are basic blocks (faster, smaller 

problem, less overhead)

 Most of the time, need to pay attention to 
semantics of specific operations
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A Few Transformations (1)

 Common subexpression elimination

 If x op y is calculated at a point where it is 
available, the recalculation can be dropped

 Constant propagation

 If t := c and c is a constant, a later use of t 
can be replaced by c
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A Few Transformations (2)

 Copy propagation

 If t := y and the definition of t is later used 
where y has not been redefined, can replace t 
with y

 Dead code elimination

 If x := exp and x is not live out, then this can 
be deleted

 IF it doesn’t have side effects, and IF deleting 
it doesn’t change program semantics
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Faster Dataflow Analysis

 Besides working with basic blocks, there 
are some other ways to speed things up
 Pick the right order to process blocks

 Depends on whether information flows forwards or 
backwards

 Can calculate def-use chains to link uses to 
define points (but SSA is the more general 
way to do this)

 Use worklist algorithms to recalculate only 
things that have changed instead of redoing 
complete analysis
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Tranformations & Analysis

 Transformations and optimizations 
change the information in the analysis

 Examples

 If a:=b op c is removed as dead code, a 
previous assignment b:=… (or c:=…) 
might become dead

 Eliminating one common subexpression 
might expose another
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Transformation & Analysis

 Brute force strategy

 Perform global analysis

 Do as many dataflow-based optimizations 
as possible

 Repeat until no more changes found

 But this can require lots of recalculation 
if transformations cascade badly
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Example

 Suppose we discover that this 
statement is useless

x := a0 + a1 + a2 + … + an

 What happens if we eliminate it?
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What we discovered

 What we really 
discovered is that
x := tnm1 + an
is dead

 When this is 
eliminated the next 
pass discovers that 
tnm1 := … is dead

 etc…

t1 := a0 + a1

t2 := t1 + a2

t3 := t2 + a3

…

tnm1 := 

tnm2 + anm1

x := tnm1 + an
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Analysis Strategies (1)

 Cutoff: quit after some small (fixed) 
number of rounds (e.g., 3)

 Assumes additional rounds unlikely to do 
much good

 Do cascading analysis that remains 
valid after transformations

 Value numbering is an example of this
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Analysis Strategies (2)

 Incremental dataflow analysis

 When optimizer changes something, tweak 
the analysis information to reflect the new 
situation
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Incremental Liveness Analysis

 Example: suppose we delete a:= b op c

 a is no longer defined here; if it was live-
out, it is now live-in at this point

 b and c are no longer used here; if they 
are not live-out at this point, they are no 
longer live-in
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Alias Analysis

 So far we have (mostly) assumed 
simple variables – i.e., compiler 
temporaries or local scalar variables

 Names are unambiguous

 Behavior of external variables (i.e, memory 
locations) not analyzed

 i.e., we store or load from memory without 
considering how locations may interact
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Aliases

 A variable or memory location may 
have multiple names or aliases 

 Call-by-reference parameters

 Variables whose address is taken (&x)

 Expressions that dereference pointers 
(p.x, *p)

 Expressions involving subscripts (a[i])

 Variables in nested scopes
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Aliases vs Optimizations

 Example:

p.x := 5;  q.x := 7;  a := p.x;

 Does reaching definition analysis show that 
the definition of p.x reaches a?  

 (Or: do p and q refer to the same 
variable?)

 (Or: can p and q refer to the same thing?)
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Aliases vs Optimizations

 Example

void f(int *p, int *q) {

*p = 1; *q = 2;

return *p;

}

 How do we account for the possibility that 
p and q might refer to the same thing?
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Types and Aliases (1)

 In Java, ML, MiniJava, and others, if 
two variables have incompatible types 
they cannot be names for the same 
location

 Also helps that programmer cannot create 
arbitrary pointers to storage in these 
languages
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Types and Aliases (2)

 Strategy: Divide memory locations into 
alias classes based on type information 
(every type, array, record field is a class)

 Implication: need to propagate type 
information from the semantics pass to 
optimizer
 Not normally true of a minimally typed IR

 Items in different alias classes cannot refer 
to each other
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Aliases and Flow Analysis

 Idea: Base alias classes on points where a 
value is created
 Every new/malloc and each local or global 

variable whose address is taken is an alias 
class

 Pointers can refer to values in multiple alias 
classes (so each memory reference is to a set 
of alias classes)

 Use to calculate “may alias” information (e.g., 
p “may alias” q at program point s)
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Using “may-alias” information

 Treat each alias class as a “variable” in 
dataflow analysis problems

 Example: framework for available 
expressions

 Given statement   s: M[a]:=b,

gen[s] = { }

kill[s] = { M[x] | a may alias x at s }
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May-Alias Analysis

 Without alias analysis, 
#2 kills M[t] since x 
and t might be related

 If analysis determines 
that “x may-alias t” is 
false, M[t] is still 
available at #3; can 
eliminate the common 
subexpression and 
use copy propagation

 Code

1:  u := M[t]

2:  M[x] := r

3:  w := M[t]

4:  b := u+w
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Loops

 Much of he execution time of programs 
is spent here

  worth considerable effort to make 
loops go faster

  want to figure out how to recognize 
loops and figure out how to “improve” 
them
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What’s a Loop?

 In a control flow graph, a loop is a set 
of nodes S such that:

 S includes a header node h

 From any node in S there is a path of 
directed edges leading to h

 There is a path from h to any node in S

 There is no edge from any node outside S 
to any node in S other than h

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-32



Entries and Exits

 In a loop

 An entry node is one with some 
predecessor outside the loop

 An exit node is one that has a successor 
outside the loop

 Corollary of preceding definitions: A 
loop may have multiple exit nodes, but 
only one entry node
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Reducible Flow Graphs

 In a reducible flow graph, any two loops are 
either nested or disjoint

 Roughly, to discover if a flow graph is 
reducible, repeatedly delete edges and collapse 
together pairs of nodes (x,y) where x is the 
only predecessor of y

 If the graph can be reduced to a single node it 
is reducible
 Caution: this is the “powerpoint” version of the 

definition – see a good compiler book for the 
careful details
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Example: Is this Reducible?
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Example: Is this Reducible?
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Reducible Flow Graphs in 
Practice

 Common control-flow constructs yield 
reducible flow graphs
 if-then[-else], while, do, for, break(!)

 A C function without goto will always be 
reducible

 Many dataflow analysis algorithms are 
very efficient on reducible graphs, but

 We don’t need to assume reducible 
control-flow graphs to handle loops
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Finding Loops in Flow Graphs

 We use dominators for this

 Recall

 Every control flow graph has a unique start 
node s0

 Node x dominates node y if every path 
from s0 to y must go through x

 A node x dominates itself
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Calculating Dominator Sets

 D[n] is the set of nodes that dominate n

 D[s0] = { s0 }

 D[n] = { n }  ( ppred[n] D[p] )

 Set up an iterative analysis as usual to 
solve this

 Except initially each D[n] must be all nodes 
in the graph – updates make these sets 
smaller if changed
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Immediate Dominators

 Every node n has a single immediate 
dominator idom(n)
 idom(n) differs from n
 idom(n) dominates n
 idom(n) does not dominate any other 

dominator of n

 Fact (er, theorem): If a dominates n and b 
dominates n, then either a dominates b or 
b dominates a
  idom(n) is unique
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Dominator Tree

 A dominator tree is constructed from a 
flowgraph by drawing an edge form 
every node in n to idom(n)

 This will be a tree.  Why?
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Example
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Back Edges & Loops

 A flow graph edge from a node n to a 
node h that dominates n is a back edge

 For every back edge there is a 
corresponding subgraph of the flow 
graph that is a loop
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Natural Loops

 If h dominates n and n->h is a back edge, 
then the natural loop of that back edge is 
the set of nodes x such that

 h dominates x

 There is a path from x to n not containing h

 h is the header of this loop

 Standard loop optimizations can cope with 
loops whether they are natural or not
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Inner Loops

 Inner loops are more important for 
optimization because most execution 
time is expected to be spent there

 If two loops share a header, it is hard 
to tell which one is “inner”

 Common way to handle this is to merge 
natural loops with the same header
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Inner (nested) loops

 Suppose

 A and B are loops with headers a and b

 a  b

 b is in A

 Then

 The nodes of B are a proper subset of A

 B is nested in A, or B is the inner loop
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Loop-Nest Tree

 Given a flow graph G
1. Compute the dominators of G

2. Construct the dominator tree

3. Find the natural loops (thus all loop-
header nodes)

4. For each loop header h, merge all natural 
loops of h into a single loop: loop[h]

5. Construct a tree of loop headers s.t. h1 is 
above h2 if h2 is in loop[h1]
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Loop-Nest Tree details

 Leaves of this tree are the innermost 
loops

 Need to put all non-loop nodes 
somewhere

 Convention: lump these into the root of the 
loop-nest tree
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Example
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Loop Preheader

 Often we need a place to park code 
right before the beginning of a loop

 Easy if there is a single node preceding 
the loop header h

 But this isn’t the case in general

 So insert a preheader node p

 Include an edge p->h

 Change all edges x->h to be x->p
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Loop-Invariant Computations

 Idea: If x := a1 op a2 always does the 
same thing each time around the loop, 
we’d like to hoist it and do it once 
outside the loop

 But can’t always tell if a1 and a2 will 
have the same value

 Need a conservative (safe) approximation
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Loop-Invariant Computations

 d: x := a1 op a2 is loop-invariant if for each ai
 ai is a constant, or
 All the definitions of ai that reach d are outside 

the loop, or
 Only one definition of ai reaches d, and that 

definition is loop invariant

 Use this to build an iterative algorithm
 Base cases: constants and operands defined 

outside the loop
 Then: repeatedly find definitions with loop-

invariant operands
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Hoisting

 Assume that  d: x := a1 op a2  is loop 
invariant.  We can hoist it to the loop 
preheader if
 d dominates all loop exits where x is live-out, 

and
 There is only one definition of x in the loop, 

and
 x is not live-out of the loop preheader

 Need to modify this if a1 op a2 could have 
side effects or raise an exception
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Hoisting: Possible?

 Example 1

L0:t := 0

L1: i := i + 1

t := a op b

M[i] := t

if i < n goto L1

L2:x := t

 Example 2

L0:t := 0

L1: if i ≥ n goto L2 

i := i + 1

t := a op b

M[i] := t

goto L1

L2:x := t
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Hoisting: Possible?

 Example 3

L0:t := 0

L1: i := i + 1

t := a op b

M[i] := t

t := 0

M[j] := t

if i < n goto L1

L2:x := t

 Example 4

L0:t := 0

L1:M[j] := t

i := i + 1

t := a op b

M[i] := t

if i < n goto L1

L2:x := t
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Induction Variables

 Suppose inside a loop

 Variable i is incremented or decremented

 Variable j is set ot i*c+d where c and d are 
loop-invariant

 Then we can calculate j’s value without 
using i 

 Whenever i is incremented by a, increment 
j by c*a
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Example

 Original
s := 0
i := 0

L1: if i ≥ n goto L2
j := i*4
k := j+a
x := M[k]
s := s+x
i := i+1
goto L1

L2:

 Do
 Induction-variable 

analysis to discover i
and j are related 
induction variables

 Strength reduction to 
replace *4 with an 
addition

 Induction-variable 
elimination to replace i
≥ n

 Assorted copy 
propagation
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Result

 Original
s := 0
i := 0

L1: if i ≥ n goto L2
j := i*4
k := j+a
x := M[k]
s := s+x
i := i+1
goto L1

L2:

 Transformed
s := 0
k’ = a
b = n*4
c = a+b

L1: if k’ ≥ c goto L2
x := M[k’]
s := s+x
k’ := k’+4
goto L1

L2:
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Loop Unrolling

 If the body of a loop is small, most of 
the time is spent in the “increment and 
test” code

 Idea: reduce overhead by unrolling –
put two or more copies of the loop body 
inside the loop
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Loop Unrolling

 Basic idea: Given loop L with header 
node h and back edges si->h

1. Copy the nodes to make loop L’ with 
header h’ and back edges si’->h’

2. Change all backedges in L from si->h to 
si->h’

3. Change all back edges in L’ from si’->h’ 
to si’->h
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Unrolling Algorithm Results

 Before

L1:x := M[i]

s := s + x

i := i + 4

if i<n goto L1 else L2

L2:

 After

L1: x := M[i]

s := s + x

i := i + 4

if i<n goto L1’ else L2

L1’:x := M[i]

s := s + x

i := i + 4

if i<n goto L1 else L2

L2:
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Hmmmm….

 Not so great – just code bloat

 But: use induction variables and various 
loop transformations to clean up
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After Some Optimizations

 Before

L1: x := M[i]

s := s + x

i := i + 4

if i<n goto L1’ else L2

L1’:x := M[i]

s := s + x

i := i + 4

if i<n goto L1 else L2

L2:

 After

L1: x := M[i]

s := s + x

x := M[i+4]

s := s + x

i := i + 8

if i<n goto L1 else L2

L2:
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Still Broken

 But in a different, better(?) way

 Good code, but only correct if original 
number of loop iterations was even

 Fix: add an epilogue to handle the 
“odd” leftover iteration
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Fixed

 Before

L1:x := M[i]

s := s + x

x := M[i+4]

s := s + x

i := i + 8

if i<n goto L1 else L2

L2:

 After
if i<n-8 goto L1 else L2

L1: x := M[i]
s := s + x
x := M[i+4]
s := s + x
i := i + 8
if i<n-8 goto L1 else L2

L2: x := M[i]
s := s+x
i := i+4
if i < n goto L2 else L3

L3:
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Postscript

 This example only unrolls the loop by a 
factor of 2

 More typically, unroll by a factor of K

 Then need an epilogue that is a loop like 
the original that iterates up to K-1 times
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Memory Heirarchies

 One of the great triumphs of computer 
design

 Effect is a large, fast memory

 Reality is a series of progressively larger, 
slower, cheaper stores, with frequently 
accessed data automatically staged to 
faster storage (cache, main storage, disk)

 Programmer/compiler typically treats it as 
one large store.  Bug or feature? 
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Memory Issues

 Byte load/store is often slower than whole 
(physical) word load/store
 Unaligned access is often extremely slow

 Temporal locality: accesses to recently 
accessed data will usually find it in the (fast) 
cache

 Spatial locality: accesses to data near recently 
used data will usually be fast
 “near” = in the same cache block

 But – accesses to blocks that map to the same 
cache block will cause thrashing
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Data Alignment

 Data objects (structs) often are similar in 
size to a cache block (≈ 8 words)
  Better if objects don’t span blocks

 Some strategies
 Allocate objects sequentially; bump to next 

block boundary if useful

 Allocate objects of same common size in 
separate pools (all size-2, size-4, etc.)

 Tradeoff: speed for some wasted space
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Instruction Alignment

 Align frequently executed basic blocks on cache 
boundaries (or avoid spanning cache blocks)

 Branch targets (particularly loops) may be 
faster if they start on a cache line boundary

 Try to move infrequent code (startup, 
exceptions) away from hot code

 Optimizing compiler should have a basic-block 
ordering phase (& maybe even loader)
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Loop Interchange

 Watch for bad cache patterns in inner 
loops; rearrange if possible

 Example
for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
for (k = 0; k < p; k++)
a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]

 b[i,j+1,k] is reused in the next two iterations, 
but will have been flushed from the cache by 
the k loop
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Loop Interchange

 Solution for this example: interchange j 
and k loops

for (i = 0; i < m; i++)

for (k = 0; k < p; k++)

for (j = 0; j < n; j++)

a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]

 Now b[i,j+1,k] will be used three times on 
each cache load

 Safe because loop iterations are independent
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Loop Interchange

 Need to construct a data-dependency 
graph showing information flow between 
loop iterations

 For example, iteration (j,k) depends on 
iteration (j’,k’) if (j’,k’) computes values 
used in (j,k) or stores values overwritten 
by (j,k)
 If there is a dependency and loops are 

interchanged, we could get different results –
so can’t do it
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Blocking

 Consider matrix multiply
for (i = 0; i < n; i++)
for (j = 0; j < n; j++) {

c[i,j] = 0.0;
for (k = 0; k < n; k++)
c[i,j] = c[i,j] + a[i,k]*b[k,j]

}

 If A, B fit in the cache together, great!
 If they don’t, then every b[k,j] reference will be a cache 

miss
 Loop interchange (i<->j) won’t help; then every a[i,k] 

reference would be a miss
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Blocking

 Solution: reuse rows of A and columns 
of B while they are still in the cache

 Assume the cache can hold 2*c*n 
matrix elements (1 < c < n)

 Calculate c  c blocks of C using c rows 
of A and c columns of B
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Blocking

 Calculating c  c blocks of C

for (i = i0; i < i0+c; i++)

for (j = j0; j < j0+c; j++) {

c[i,j] = 0.0;

for (k = 0; k < n; k++)

c[i,j] = c[i,j] + a[i,k]*b[k,j]

}
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Blocking

 Then nest this inside loops that calculate 
successive c  c blocks
for (i0 = 0; i0 < n; i0+=c)
for (j0 = 0; j0 < n; j0+=c)
for (i = i0; i < i0+c; i++)
for (j = j0; j < j0+c; j++) {
c[i,j] = 0.0;
for (k = 0; k < n; k++)
c[i,j] = c[i,j] + a[i,k]*b[k,j]

}
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Parallelizing Code

 This is only a taste of how we can 
rearrange loops.  There is a whole class 
of transformations that attempt to 
discover loops that can be vectorized or 
done in parallel, which we won’t get to.  
Look for more in the Dragon Book or 
other sources.
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