
2/26/2008 © 2002-08 Hal Perkins & UW CSE T-1

CSE P 501 – Compilers

Analysis & Optimizations & Loops

Hal Perkins

Winter 2008

Agenda

 Dataflow analysis example – live variables
 Loop optimizations

 Dominators – discovering loops
 Loop invariant calculations
 Loop transformations

 A quick look at some memory hierarchy
issues

 Largely based on material in Appel ch. 10, 17, 18,21; similar
material in other books

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-2

Live Variables

 Recall that two variables can be
assigned to the same register if they
are not alive at the same time

  We would like to analyze code to
decide when variables are “live”

 Def. A variable is live if it holds a value
that may be needed in the future

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-3

Example (1 stmt per block)

 Code

a := 0

L: b := a+1

c := c+b

a := b*2

if a < N goto L

return c

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-4

1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c

Live Ranges

 b: 2 -> 3, 3 -> 4

 a: 1 -> 2, and
4 -> 5 -> 2,
but not 2 -> 3 -> 4

 c: live on entry; live
throughout

 Liveness analysis
flows from the future
to the past

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-5

1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c

Liveness Analysis

 A variable is live on an edge if there is a
path from that edge to a use that does
not go through any definition

 In a block, a variable is

 Live-in if it is live on any in-edge

 Live-out if it is live on any out-edge

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-6

Liveness Analysis Sets

 For each block b

 use[b] = variable used in b before any def

 def[b] = variable defined in b & not killed

 in[b] = variables live on entry to b

 out[b] = variables live on exit from b

 Note: slightly different from definitions for
same problem in last week’s slides

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-7

Dataflow equation

 Given the preceding definitions, we have

in[b] = use[b]  (out[b] – def[b])

out[b] = ssucc[b] in[s]

 Algorithm

 Set in[b] = out[b] = 

 Update in, out until no change

 Evaluation order: back to front is best
given information flow

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-8

Calculation

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-9

1: a:= 0

2: b:=a+1

3: c:=c+b

4: a:=b+2

5: a < N

6: return c

Liveness & Register Allocation

 Liveness information is used to
construct an interference graph

 If two variables are live at the same
point in the program, they interfere,
and cannot be in the same register

 Graph coloring starts with this
information

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-10

Liveness in Larger Programs

 This example treated individual
instructions as nodes

 Only information discovered was where
operands were defined and used

 In general:
 Nodes are basic blocks (faster, smaller

problem, less overhead)

 Most of the time, need to pay attention to
semantics of specific operations

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-11

A Few Transformations (1)

 Common subexpression elimination

 If x op y is calculated at a point where it is
available, the recalculation can be dropped

 Constant propagation

 If t := c and c is a constant, a later use of t
can be replaced by c

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-12

A Few Transformations (2)

 Copy propagation

 If t := y and the definition of t is later used
where y has not been redefined, can replace t
with y

 Dead code elimination

 If x := exp and x is not live out, then this can
be deleted

 IF it doesn’t have side effects, and IF deleting
it doesn’t change program semantics

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-13

Faster Dataflow Analysis

 Besides working with basic blocks, there
are some other ways to speed things up
 Pick the right order to process blocks

 Depends on whether information flows forwards or
backwards

 Can calculate def-use chains to link uses to
define points (but SSA is the more general
way to do this)

 Use worklist algorithms to recalculate only
things that have changed instead of redoing
complete analysis

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-14

Tranformations & Analysis

 Transformations and optimizations
change the information in the analysis

 Examples

 If a:=b op c is removed as dead code, a
previous assignment b:=… (or c:=…)
might become dead

 Eliminating one common subexpression
might expose another

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-15

Transformation & Analysis

 Brute force strategy

 Perform global analysis

 Do as many dataflow-based optimizations
as possible

 Repeat until no more changes found

 But this can require lots of recalculation
if transformations cascade badly

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-16

Example

 Suppose we discover that this
statement is useless

x := a0 + a1 + a2 + … + an

 What happens if we eliminate it?

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-17

What we discovered

 What we really
discovered is that
x := tnm1 + an
is dead

 When this is
eliminated the next
pass discovers that
tnm1 := … is dead

 etc…

t1 := a0 + a1

t2 := t1 + a2

t3 := t2 + a3

…

tnm1 :=

tnm2 + anm1

x := tnm1 + an

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-18

Analysis Strategies (1)

 Cutoff: quit after some small (fixed)
number of rounds (e.g., 3)

 Assumes additional rounds unlikely to do
much good

 Do cascading analysis that remains
valid after transformations

 Value numbering is an example of this

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-19

Analysis Strategies (2)

 Incremental dataflow analysis

 When optimizer changes something, tweak
the analysis information to reflect the new
situation

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-20

Incremental Liveness Analysis

 Example: suppose we delete a:= b op c

 a is no longer defined here; if it was live-
out, it is now live-in at this point

 b and c are no longer used here; if they
are not live-out at this point, they are no
longer live-in

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-21

Alias Analysis

 So far we have (mostly) assumed
simple variables – i.e., compiler
temporaries or local scalar variables

 Names are unambiguous

 Behavior of external variables (i.e, memory
locations) not analyzed

 i.e., we store or load from memory without
considering how locations may interact

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-22

Aliases

 A variable or memory location may
have multiple names or aliases

 Call-by-reference parameters

 Variables whose address is taken (&x)

 Expressions that dereference pointers
(p.x, *p)

 Expressions involving subscripts (a[i])

 Variables in nested scopes

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-23

Aliases vs Optimizations

 Example:

p.x := 5; q.x := 7; a := p.x;

 Does reaching definition analysis show that
the definition of p.x reaches a?

 (Or: do p and q refer to the same
variable?)

 (Or: can p and q refer to the same thing?)

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-24

Aliases vs Optimizations

 Example

void f(int *p, int *q) {

*p = 1; *q = 2;

return *p;

}

 How do we account for the possibility that
p and q might refer to the same thing?

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-25

Types and Aliases (1)

 In Java, ML, MiniJava, and others, if
two variables have incompatible types
they cannot be names for the same
location

 Also helps that programmer cannot create
arbitrary pointers to storage in these
languages

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-26

Types and Aliases (2)

 Strategy: Divide memory locations into
alias classes based on type information
(every type, array, record field is a class)

 Implication: need to propagate type
information from the semantics pass to
optimizer
 Not normally true of a minimally typed IR

 Items in different alias classes cannot refer
to each other

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-27

Aliases and Flow Analysis

 Idea: Base alias classes on points where a
value is created
 Every new/malloc and each local or global

variable whose address is taken is an alias
class

 Pointers can refer to values in multiple alias
classes (so each memory reference is to a set
of alias classes)

 Use to calculate “may alias” information (e.g.,
p “may alias” q at program point s)

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-28

Using “may-alias” information

 Treat each alias class as a “variable” in
dataflow analysis problems

 Example: framework for available
expressions

 Given statement s: M[a]:=b,

gen[s] = { }

kill[s] = { M[x] | a may alias x at s }

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-29

May-Alias Analysis

 Without alias analysis,
#2 kills M[t] since x
and t might be related

 If analysis determines
that “x may-alias t” is
false, M[t] is still
available at #3; can
eliminate the common
subexpression and
use copy propagation

 Code

1: u := M[t]

2: M[x] := r

3: w := M[t]

4: b := u+w

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-30

Loops

 Much of he execution time of programs
is spent here

  worth considerable effort to make
loops go faster

  want to figure out how to recognize
loops and figure out how to “improve”
them

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-31

What’s a Loop?

 In a control flow graph, a loop is a set
of nodes S such that:

 S includes a header node h

 From any node in S there is a path of
directed edges leading to h

 There is a path from h to any node in S

 There is no edge from any node outside S
to any node in S other than h

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-32

Entries and Exits

 In a loop

 An entry node is one with some
predecessor outside the loop

 An exit node is one that has a successor
outside the loop

 Corollary of preceding definitions: A
loop may have multiple exit nodes, but
only one entry node

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-33

Reducible Flow Graphs

 In a reducible flow graph, any two loops are
either nested or disjoint

 Roughly, to discover if a flow graph is
reducible, repeatedly delete edges and collapse
together pairs of nodes (x,y) where x is the
only predecessor of y

 If the graph can be reduced to a single node it
is reducible
 Caution: this is the “powerpoint” version of the

definition – see a good compiler book for the
careful details

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-34

Example: Is this Reducible?

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-35

Example: Is this Reducible?

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-36

Reducible Flow Graphs in
Practice

 Common control-flow constructs yield
reducible flow graphs
 if-then[-else], while, do, for, break(!)

 A C function without goto will always be
reducible

 Many dataflow analysis algorithms are
very efficient on reducible graphs, but

 We don’t need to assume reducible
control-flow graphs to handle loops

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-37

Finding Loops in Flow Graphs

 We use dominators for this

 Recall

 Every control flow graph has a unique start
node s0

 Node x dominates node y if every path
from s0 to y must go through x

 A node x dominates itself

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-38

Calculating Dominator Sets

 D[n] is the set of nodes that dominate n

 D[s0] = { s0 }

 D[n] = { n }  (ppred[n] D[p])

 Set up an iterative analysis as usual to
solve this

 Except initially each D[n] must be all nodes
in the graph – updates make these sets
smaller if changed

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-39

Immediate Dominators

 Every node n has a single immediate
dominator idom(n)
 idom(n) differs from n
 idom(n) dominates n
 idom(n) does not dominate any other

dominator of n

 Fact (er, theorem): If a dominates n and b
dominates n, then either a dominates b or
b dominates a
  idom(n) is unique

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-40

Dominator Tree

 A dominator tree is constructed from a
flowgraph by drawing an edge form
every node in n to idom(n)

 This will be a tree. Why?

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-41

Example

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-42

Back Edges & Loops

 A flow graph edge from a node n to a
node h that dominates n is a back edge

 For every back edge there is a
corresponding subgraph of the flow
graph that is a loop

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-43

Natural Loops

 If h dominates n and n->h is a back edge,
then the natural loop of that back edge is
the set of nodes x such that

 h dominates x

 There is a path from x to n not containing h

 h is the header of this loop

 Standard loop optimizations can cope with
loops whether they are natural or not

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-44

Inner Loops

 Inner loops are more important for
optimization because most execution
time is expected to be spent there

 If two loops share a header, it is hard
to tell which one is “inner”

 Common way to handle this is to merge
natural loops with the same header

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-45

Inner (nested) loops

 Suppose

 A and B are loops with headers a and b

 a  b

 b is in A

 Then

 The nodes of B are a proper subset of A

 B is nested in A, or B is the inner loop

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-46

Loop-Nest Tree

 Given a flow graph G
1. Compute the dominators of G

2. Construct the dominator tree

3. Find the natural loops (thus all loop-
header nodes)

4. For each loop header h, merge all natural
loops of h into a single loop: loop[h]

5. Construct a tree of loop headers s.t. h1 is
above h2 if h2 is in loop[h1]

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-47

Loop-Nest Tree details

 Leaves of this tree are the innermost
loops

 Need to put all non-loop nodes
somewhere

 Convention: lump these into the root of the
loop-nest tree

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-48

Example

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-49

Loop Preheader

 Often we need a place to park code
right before the beginning of a loop

 Easy if there is a single node preceding
the loop header h

 But this isn’t the case in general

 So insert a preheader node p

 Include an edge p->h

 Change all edges x->h to be x->p

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-50

Loop-Invariant Computations

 Idea: If x := a1 op a2 always does the
same thing each time around the loop,
we’d like to hoist it and do it once
outside the loop

 But can’t always tell if a1 and a2 will
have the same value

 Need a conservative (safe) approximation

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-51

Loop-Invariant Computations

 d: x := a1 op a2 is loop-invariant if for each ai
 ai is a constant, or
 All the definitions of ai that reach d are outside

the loop, or
 Only one definition of ai reaches d, and that

definition is loop invariant

 Use this to build an iterative algorithm
 Base cases: constants and operands defined

outside the loop
 Then: repeatedly find definitions with loop-

invariant operands

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-52

Hoisting

 Assume that d: x := a1 op a2 is loop
invariant. We can hoist it to the loop
preheader if
 d dominates all loop exits where x is live-out,

and
 There is only one definition of x in the loop,

and
 x is not live-out of the loop preheader

 Need to modify this if a1 op a2 could have
side effects or raise an exception

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-53

Hoisting: Possible?

 Example 1

L0:t := 0

L1: i := i + 1

t := a op b

M[i] := t

if i < n goto L1

L2:x := t

 Example 2

L0:t := 0

L1: if i ≥ n goto L2

i := i + 1

t := a op b

M[i] := t

goto L1

L2:x := t

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-54

Hoisting: Possible?

 Example 3

L0:t := 0

L1: i := i + 1

t := a op b

M[i] := t

t := 0

M[j] := t

if i < n goto L1

L2:x := t

 Example 4

L0:t := 0

L1:M[j] := t

i := i + 1

t := a op b

M[i] := t

if i < n goto L1

L2:x := t

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-55

Induction Variables

 Suppose inside a loop

 Variable i is incremented or decremented

 Variable j is set ot i*c+d where c and d are
loop-invariant

 Then we can calculate j’s value without
using i

 Whenever i is incremented by a, increment
j by c*a

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-56

Example

 Original
s := 0
i := 0

L1: if i ≥ n goto L2
j := i*4
k := j+a
x := M[k]
s := s+x
i := i+1
goto L1

L2:

 Do
 Induction-variable

analysis to discover i
and j are related
induction variables

 Strength reduction to
replace *4 with an
addition

 Induction-variable
elimination to replace i
≥ n

 Assorted copy
propagation

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-57

Result

 Original
s := 0
i := 0

L1: if i ≥ n goto L2
j := i*4
k := j+a
x := M[k]
s := s+x
i := i+1
goto L1

L2:

 Transformed
s := 0
k’ = a
b = n*4
c = a+b

L1: if k’ ≥ c goto L2
x := M[k’]
s := s+x
k’ := k’+4
goto L1

L2:

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-58

Details are somewhat messy – see your favorite compiler book

Loop Unrolling

 If the body of a loop is small, most of
the time is spent in the “increment and
test” code

 Idea: reduce overhead by unrolling –
put two or more copies of the loop body
inside the loop

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-59

Loop Unrolling

 Basic idea: Given loop L with header
node h and back edges si->h

1. Copy the nodes to make loop L’ with
header h’ and back edges si’->h’

2. Change all backedges in L from si->h to
si->h’

3. Change all back edges in L’ from si’->h’
to si’->h

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-60

Unrolling Algorithm Results

 Before

L1:x := M[i]

s := s + x

i := i + 4

if i<n goto L1 else L2

L2:

 After

L1: x := M[i]

s := s + x

i := i + 4

if i<n goto L1’ else L2

L1’:x := M[i]

s := s + x

i := i + 4

if i<n goto L1 else L2

L2:

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-61

Hmmmm….

 Not so great – just code bloat

 But: use induction variables and various
loop transformations to clean up

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-62

After Some Optimizations

 Before

L1: x := M[i]

s := s + x

i := i + 4

if i<n goto L1’ else L2

L1’:x := M[i]

s := s + x

i := i + 4

if i<n goto L1 else L2

L2:

 After

L1: x := M[i]

s := s + x

x := M[i+4]

s := s + x

i := i + 8

if i<n goto L1 else L2

L2:

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-63

Still Broken

 But in a different, better(?) way

 Good code, but only correct if original
number of loop iterations was even

 Fix: add an epilogue to handle the
“odd” leftover iteration

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-64

Fixed

 Before

L1:x := M[i]

s := s + x

x := M[i+4]

s := s + x

i := i + 8

if i<n goto L1 else L2

L2:

 After
if i<n-8 goto L1 else L2

L1: x := M[i]
s := s + x
x := M[i+4]
s := s + x
i := i + 8
if i<n-8 goto L1 else L2

L2: x := M[i]
s := s+x
i := i+4
if i < n goto L2 else L3

L3:

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-65

Postscript

 This example only unrolls the loop by a
factor of 2

 More typically, unroll by a factor of K

 Then need an epilogue that is a loop like
the original that iterates up to K-1 times

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-66

Memory Heirarchies

 One of the great triumphs of computer
design

 Effect is a large, fast memory

 Reality is a series of progressively larger,
slower, cheaper stores, with frequently
accessed data automatically staged to
faster storage (cache, main storage, disk)

 Programmer/compiler typically treats it as
one large store. Bug or feature?

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-67

Memory Issues

 Byte load/store is often slower than whole
(physical) word load/store
 Unaligned access is often extremely slow

 Temporal locality: accesses to recently
accessed data will usually find it in the (fast)
cache

 Spatial locality: accesses to data near recently
used data will usually be fast
 “near” = in the same cache block

 But – accesses to blocks that map to the same
cache block will cause thrashing

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-68

Data Alignment

 Data objects (structs) often are similar in
size to a cache block (≈ 8 words)
  Better if objects don’t span blocks

 Some strategies
 Allocate objects sequentially; bump to next

block boundary if useful

 Allocate objects of same common size in
separate pools (all size-2, size-4, etc.)

 Tradeoff: speed for some wasted space

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-69

Instruction Alignment

 Align frequently executed basic blocks on cache
boundaries (or avoid spanning cache blocks)

 Branch targets (particularly loops) may be
faster if they start on a cache line boundary

 Try to move infrequent code (startup,
exceptions) away from hot code

 Optimizing compiler should have a basic-block
ordering phase (& maybe even loader)

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-70

Loop Interchange

 Watch for bad cache patterns in inner
loops; rearrange if possible

 Example
for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
for (k = 0; k < p; k++)
a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]

 b[i,j+1,k] is reused in the next two iterations,
but will have been flushed from the cache by
the k loop

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-71

Loop Interchange

 Solution for this example: interchange j
and k loops

for (i = 0; i < m; i++)

for (k = 0; k < p; k++)

for (j = 0; j < n; j++)

a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]

 Now b[i,j+1,k] will be used three times on
each cache load

 Safe because loop iterations are independent

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-72

Loop Interchange

 Need to construct a data-dependency
graph showing information flow between
loop iterations

 For example, iteration (j,k) depends on
iteration (j’,k’) if (j’,k’) computes values
used in (j,k) or stores values overwritten
by (j,k)
 If there is a dependency and loops are

interchanged, we could get different results –
so can’t do it

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-73

Blocking

 Consider matrix multiply
for (i = 0; i < n; i++)
for (j = 0; j < n; j++) {

c[i,j] = 0.0;
for (k = 0; k < n; k++)
c[i,j] = c[i,j] + a[i,k]*b[k,j]

}

 If A, B fit in the cache together, great!
 If they don’t, then every b[k,j] reference will be a cache

miss
 Loop interchange (i<->j) won’t help; then every a[i,k]

reference would be a miss

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-74

Blocking

 Solution: reuse rows of A and columns
of B while they are still in the cache

 Assume the cache can hold 2*c*n
matrix elements (1 < c < n)

 Calculate c  c blocks of C using c rows
of A and c columns of B

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-75

Blocking

 Calculating c  c blocks of C

for (i = i0; i < i0+c; i++)

for (j = j0; j < j0+c; j++) {

c[i,j] = 0.0;

for (k = 0; k < n; k++)

c[i,j] = c[i,j] + a[i,k]*b[k,j]

}

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-76

Blocking

 Then nest this inside loops that calculate
successive c  c blocks
for (i0 = 0; i0 < n; i0+=c)
for (j0 = 0; j0 < n; j0+=c)
for (i = i0; i < i0+c; i++)
for (j = j0; j < j0+c; j++) {
c[i,j] = 0.0;
for (k = 0; k < n; k++)
c[i,j] = c[i,j] + a[i,k]*b[k,j]

}

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-77

Parallelizing Code

 This is only a taste of how we can
rearrange loops. There is a whole class
of transformations that attempt to
discover loops that can be vectorized or
done in parallel, which we won’t get to.
Look for more in the Dragon Book or
other sources.

2/26/2008 © 2002-08 Hal Perkins & UW CSE T-78

