
2/19/2008 © 2002-08 Hal Perkins & UW CSE R-1

CSE P 501 – Compilers

Dataflow Analysis

Hal Perkins

Winter 2008



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-2

Agenda

 Initial example: dataflow analysis for 
common subexpression elimination

 Other analysis problems that work in 
the same framework



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-3

The Story So Far…

 Redundant expression elimination

 Local Value Numbering

 Superlocal Value Numbering

 Extends VN to EBBs

 SSA-like namespace

 Dominator VN Technique (DVNT)

 All of these propagate along forward edges

 None are global

 In particular, can’t handle back edges (loops)



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-4

Dominator Value Numbering
m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0

r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0

z0 = c0 + d0

G

 Most sophisticated 
algorithm so far

 Still misses some 
opportunities

 Can’t handle loops



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-5

Available Expressions

 Goal: use dataflow analysis to find 
common subexpressions whose range 
spans basic blocks

 Idea: calculate available expressions at 
beginning of each basic block

 Avoid re-evaluation of an available 
expression – use a copy operation



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-6

“Available” and Other Terms

 An expression e is defined at point p in the 
CFG if its value is computed at p
 Sometimes called definition site

 An expression e is killed at point p if one of 
its operands is defined at p
 Sometimes called kill site

 An expression e is available at point p if 
every path leading to p contains a prior 
definition of e and e is not killed between 
that definition and p



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-7

Available Expression Sets

 For each block b, define

 AVAIL(b) – the set of expressions available 
on entry to b

 NKILL(b) – the set of expressions not killed
in b

 DEF(b) – the set of expressions defined in 
b and not subsequently killed in b



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-8

Computing Available 
Expressions

 AVAIL(b) is the set

AVAIL(b) = xpreds(b) (DEF(x) 

(AVAIL(x)  NKILL(x)) )

 preds(b) is the set of b’s predecessors in 
the control flow graph

 This gives a system of simultaneous 
equations – a dataflow problem



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-9

Name Space Issues

 In previous value-numbering 
algorithms, we used a SSA-like 
renaming to keep track of versions

 In global dataflow problems, we use the 
original namespace

 The KILL information captures when a 
value is no longer available



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-10

GCSE with Available 
Expressions

 For each block b, compute DEF(b) and 
NKILL(b)

 For each block b, compute AVAIL(b)

 For each block b, value number the 
block starting with AVAIL(b)

 Replace expressions in AVAIL(b) with 
references to the previously computed 
values



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-11

Global CSE Replacement

 After analysis and before 
transformation, assign a global name to 
each expression e by hashing on e

 During transformation step

 At each evaluation of e, insert copy

name(e ) = e

 At each reference to e, replace e with 
name(e ) 



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-12

Analysis

 Main problem – inserts extraneous copies at 
all definitions and uses of every e that 
appears in any AVAIL(b)

 But the extra copies are dead and easy to remove

 Useful copies often coalesce away when registers 
and temporaries are assigned

 Common strategy

 Insert copies that might be useful

 Let dead code elimination sort it out later



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-13

Computing Available 
Expressions

 Big Picture

 Build control-flow graph

 Calculate initial local data – DEF(b) and 
NKILL(b)

 This only needs to be done once

 Iteratively calculate AVAIL(b) by repeatedly 
evaluating equations until nothing changes

 Another fixed-point algorithm



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-14

Computing DEF and NKILL (1)

 For each block b with operations o1, o2, …, ok

KILLED = 

DEF(b) = 

for i = k to 1

assume oi is “x = y + z”

if (y  KILLED and z  KILLED)

add “y + z” to DEF(b)

add x to KILLED

…



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-15

Computing DEF and NKILL (2)

 After computing DEF and KILLED for a 
block b,

NKILL(b) = { all expressions }

for each expression e

for each variable v  e

if v  KILLED then

NKILL(b) = NKILL(b) - e



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-16

Computing Available 
Expressions

 Once DEF(b) and NKILL(b) are 
computed for all blocks b
Worklist = { all blocks bi }

while (Worklist  )

remove a block b from Worklist

recompute AVAIL(b)

if AVAIL(b) changed

Worklist = Worklist  successors(b)



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-17

Comparing Algorithms
m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G

 LVN – Local Value 
Numbering

 SVN – Superlocal Value 
Numbering

 DVN – Dominator-based 
Value Numbering

 GRE – Global Redundancy 
Elimination



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-18

Comparing Algorithms (2)

 LVN => SVN => DVN form a strict hierarchy 
– later algorithms find a superset of previous 
information

 Global RE finds a somewhat different set

 Discovers e+f in F (computed in both D and E)

 Misses identical values if they have different 
names (e.g., a+b and c+d when a=c and b=d)

 Value Numbering catches this



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-19

Scope of Analysis

 Larger context (EBBs, regions, global, 
interprocedural) sometimes helps

 More opportunities for optimizations

 But not always

 Introduces uncertainties about flow of control

 Usually only allows weaker analysis

 Sometimes has unwanted side effects

 Can create additional pressure on registers, for example



Code Replication

 Sometimes replicating code increases 
opportunities – modify the code to 
create larger regions with simple control 
flow

 Two examples

 Cloning

 Inline substitution

2/19/2008 © 2002-08 Hal Perkins & UW CSE R-20



Cloning

 Idea: duplicate blocks with multiple 
predecessors

 Tradeoff

 More local optimization possibilities – larger 
blocks, fewer branches

 But: larger code size, may slow down if it 
interacts badly with cache

2/19/2008 © 2002-08 Hal Perkins & UW CSE R-21



Original VN Example

2/19/2008 © 2002-08 Hal Perkins & UW CSE Q-22

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G



Example with cloning

2/19/2008 © 2002-08 Hal Perkins & UW CSE Q-23

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G
y = a + b
z = c + d

G



Inline Substitution

 Problem: an optimizer has to treat a 
procedure call as if it (could have) 
modified all globally reachable data

 Plus there is the basic expense of calling 
the procedure

 Inline Substitution: replace each call 
site with a copy of the called function 
body

2/19/2008 © 2002-08 Hal Perkins & UW CSE R-24



Inline Substitution Issues

 Pro
 More effective optimization – better local 

context and don’t need to invalidate local 
assumptions

 Eliminate overhead of normal function call

 Con
 Potential code bloat

 Need to manage recompilation when either 
caller or callee changes

2/19/2008 © 2002-08 Hal Perkins & UW CSE R-25



Dataflow analysis

 Global redundancy elimination is the 
first example of a dataflow analysis
problem

 Many similar problems can be 
expressed in a similar framework

 Only the first part of the story – once 
we’ve discovered facts, we then need to 
use them to improve code

2/19/2008 © 2002-08 Hal Perkins & UW CSE R-26



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-27

Dataflow Analysis (1)

 A collection of techniques for compile-
time reasoning about run-time values

 Almost always involves building a graph

 Trivial for basic blocks

 Control-flow graph or derivative for global 
problems

 Call graph or derivative for whole-program 
problems



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-28

Dataflow Analysis (2)

 Usually formulated as a set of 
simultaneous equations (dataflow 
problem)
 Sets attached to nodes and edges

 Need a lattice (or semilattice) to describe 
values
 In particular, has an appropriate operator to 

combine values and an appropriate “bottom” or 
minimal value



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-29

Dataflow Analysis (3)

 Desired solution is usually a meet over 
all paths (MOP) solution

 “What is true on every path from entry”

 “What can happen on any path from entry”

 Usually relates to safety of optimization



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-30

Dataflow Analysis (4)

 Limitations
 Precision – “up to symbolic execution”

 Assumes all paths taken

 Sometimes cannot afford to compute full solution

 Arrays – classic analysis treats each array as a 
single fact

 Pointers – difficult, expensive to analyze
 Imprecision rapidly adds up

 For scalar values we can quickly solve simple 
problems



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-31

Characterizing Dataflow 
Analysis

 All of these algorithms involve sets of facts 
about each basic block b
 IN(b) – facts true on entry to b
 OUT(b) – facts true on exit from b
 GEN(b) – facts created and not killed in b
 KILL(b) – facts killed in b

 These are related by the equation
OUT(b) = GEN(b)  (IN(b) – KILL(b)

 Solve this iteratively for all blocks
 Sometimes information propagates forward; 

sometimes backward



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-32

Efficiency of Dataflow Analysis

 The algorithms eventually terminate, 
but the expected time needed can be 
reduced by picking a good order to visit 
nodes in the CFG

 Forward problems – reverse postorder

 Backward problems - postorder



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-33

Example:Live Variable Analysis

 A variable v is live at point p iff there is any
path from p to a use of v along which v is not 
redefined

 Uses
 Register allocation – only live variables need a 

register (or temporary)

 Eliminating useless stores

 Detecting uses of uninitialized variables

 Improve SSA construction – only need Φ-function 
for variables that are live in a block



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-34

Equations for Live Variables

 Sets
 USED(b) – variables used in b before being 

defined in b

 NOTDEF(b) – variables not defined in b

 LIVE(b) – variables live on exit from b

 Equation
LIVE(b) = ssucc(b) USED(s) 

(LIVE(s)  NOTDEF(s))



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-35

Example: 
Available Expressions

 This is the analysis we did earlier to 
eliminate redundant expression 
evaluation

 Equation:

AVAIL(b) = xpreds(b) (DEF(x) 

(AVAIL(x)  NKILL(x)) )



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-36

Example: Reaching Definitions

 A definition d of some variable v
reaches operation i iff i reads the 
value of v and there is a path from d
to i that does not define v

 Uses

 Find all of the possible definition points for 
a variable in an expression



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-37

Equations for Reaching 
Definitions

 Sets

 DEFOUT(b) – set of definitions in b that reach the 
end of b (i.e., not subsequently redefined in b)

 SURVIVED(b) – set of all definitions not obscured 
by a definition in b

 REACHES(b) – set of definitions that reach b

 Equation

REACHES(b) = ppreds(b) DEFOUT(p) 

(REACHES(p)  SURVIVED(p))



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-38

Example: Very Busy 
Expressions

 An expression e is considered very busy
at some point p if e is evaluated and 
used along every path that leaves p, 
and evaluating e at p would produce 
the same result as evaluating it at the 
original locations

 Uses
 Code hoisting – move e to p (reduces code 

size; no effect on execution time)



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-39

Equations for Very Busy 
Expressions

 Sets
 USED(b) – expressions used in b before they are 

killed

 KILLED(b) – expressions redefined in b before 
they are used

 VERYBUSY(b) – expressions very busy on exit 
from b

 Equation
VERYBUSY(b) = ssucc(b) USED(s) 

(VERYBUSY(s) - KILLED(s))



2/19/2008 © 2002-08 Hal Perkins & UW CSE R-40

And so forth…

 General framework for discovering facts 
about programs

 Although not the only possible story

 Next: what can we do with that 
information?


