Introduction to Optimization
Hal Perkins
Winter 2008
Agenda

- Optimization
 - Goals
 - Scope: local, superlocal, regional, global, interprocedural

- Control flow graphs
- Value numbering
- Dominators
Code Improvement – How?

- Pick a better algorithm(!)
- Use machine resources effectively
 - Instruction selection & scheduling
 - Register allocation
Code Improvement (2)

- Local optimizations – basic blocks
 - Algebraic simplifications
 - Constant folding
 - Common subexpression elimination (i.e., redundancy elimination)
 - Dead code elimination
 - Specialize computation based on context
Code Improvement (3)

- Global optimizations
 - Code motion
 - Moving invariant computations out of loops
 - Strength reduction (replace multiplications by repeated additions, for example)
 - Global common subexpression elimination
 - Global register allocation
LOCATION

```
"Optimization"

- None of these improvements are truly "optimal"
  - Hard problems
  - Proofs of optimality assume artificial restrictions
- Best we can do is to improve things
```
Example: $A[i,j]$

- Without any surrounding context, need to generate code to calculate
 \[
 \text{address}(A) + (i - \text{low}_1(A)) \times (\text{high}_2(A) - \text{low}_2(A) + 1) \times \text{size}(A) + (j - \text{low}_2(A)) \times \text{size}(A)
 \]

- low_i and high_i are subscript bounds in dimension i
- $\text{address}(A)$ is the runtime address of first element of A

- ... And we really should be checking that i, j are in bounds
Some Optimizations for $A[i,j]$

- With more context, we can do better
- Examples
 - If A is local, with known bounds, much of the computation can be done at compile time
 - If $A[i,j]$ is in a loop where i and j change systematically, we probably can replace multiplications with additions each time around the loop to reference successive rows/columns
Optimization Phase

Goal

Discover, at compile time, information about the runtime behavior of the program, and use that information to improve the generated code
Running Example: Redundancy Elimination

- An expression $x+y$ is *redundant* at a program point iff, along every path from the procedure’s entry, it has been evaluated and its constituent subexpressions (x & y) have not been redefined.
- If the compiler can prove the expression is redundant:
 - Can store the result of the earlier evaluation
 - Can replace the redundant computation with a reference to the earlier (stored) result
Common Problems in Code Improvement

- This strategy is typical of most compiler optimizations
 - First, need to discover opportunities through program analysis
 - Then, need to modify the IR to take advantage of the opportunities
 - Historically, goal usually was to decrease execution time
 - Other possibilities: reduce space, power, ...
Issues (1)

- Safety – transformation must not change program meaning
 - Must generate correct results
 - Can’t generate spurious errors
 - Optimizations must be conservative
 - Large part of analysis goes towards proving safety
Issues (2)

- Profitibility
 - If a transformation is possible, is it profitable?
 - Example: loop unrolling
 - Can increase amount of work done on each iteration, i.e., reduce loop overhead
 - Can eliminate duplicate operations done on separate iterations
Issues (3)

- **Downside risks**
 - Even if a transformation is generally worthwhile, need to factor in potential problems

- **Sample issues**
 - Transformation might need more temporaries, putting additional pressure on registers
 - Increased code size could cause cache misses, or in bad cases, increase page working set
Value Numbering

- Technique for eliminating redundant expressions: assign an identifying number $VN(n)$ to each expression
 - $VN(x+y)=VN(j)$ if $x+y$ and j have the same value
 - Use hashing over value numbers for efficiency

- Old idea (Balke 1968, Ershov 1954)
 - Invented for low-level, linear IRs
 - Equivalent methods exist for tree IRs, e.g., build a DAG
Uses of Value Numbers

- Improve the code
 - Replace redundant expressions
 - Simplify algebraic identities
 - Discover, fold, and propagate constant valued expressions
Local Value Numbering

Algorithm

- For each operation $o = \langle\text{op}, o_1, o_2\rangle$ in the block
 1. Get value numbers for operands from hash lookup
 2. Hash $\langle\text{op}, \text{VN}(o_1), \text{VN}(o_2)\rangle$ to get a value number for o
 (If op is commutative, sort VN(o1), VN(o2) first)
 3. If o already has a value number, replace o with a reference to the value
 4. If o_1 and o_2 are constant, evaluate o at compile time and replace with an immediate load

- If hashing behaves well, this runs in linear time
Example

<table>
<thead>
<tr>
<th>Code</th>
<th>Rewritten</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a = x + y</code></td>
<td></td>
</tr>
<tr>
<td><code>b = x + y</code></td>
<td></td>
</tr>
<tr>
<td><code>a = 17</code></td>
<td></td>
</tr>
<tr>
<td><code>c = x + y</code></td>
<td></td>
</tr>
</tbody>
</table>
Bug in Simple Example

- If we use the original names, we get in trouble when a name is reused

Solutions

- Be clever about which copy of the value to use (e.g., use c=b in last statement)
- Create an extra temporary
- Rename around it (best!)
Renaming

- Idea: give each value a unique name
 \(a_i^j \) means \(i^{th} \) definition of \(a \) with VN = \(j \)
- Somewhat complex notation, but meaning is clear
- This is the idea behind SSA (Static Single Assignment) IR
 - Popular modern IR – exposes many opportunities for optimizations
Example Revisited

<table>
<thead>
<tr>
<th>Code</th>
<th>Rewritten</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = x + y)</td>
<td></td>
</tr>
<tr>
<td>(b = x + y)</td>
<td></td>
</tr>
<tr>
<td>(a = 17)</td>
<td></td>
</tr>
<tr>
<td>(c = x + y)</td>
<td></td>
</tr>
</tbody>
</table>
Simple Extensions to Value Numbering

- Constant folding
 - Add a bit that records when a value is constant
 - Evaluate constant values at compile time
 - Replace op with load immediate

- Algebraic identities: \(x+0, x*1, x-x, \ldots \)
 - Many special cases
 - Switch on op to narrow down checks needed
 - Replace result with input VN
Larger Scopes

- This algorithm works on straight-line blocks of code (basic blocks)
 - Best possible results for single basic blocks
 - Loses all information when control flows to another block
- To go further we need to represent multiple blocks of code and the control flow between them
Basic Blocks

- Definition: A basic block is a maximal length sequence of straight-line code.

- Properties
 - Statements are executed sequentially.
 - If any statement executes, they all do (baring exceptions).

- In a linear IR, the first statement of a basic block is often called the leader.
Control Flow Graph (CFG)

- Nodes: basic blocks
 - Possible representations: linear 3-address code, expression-level AST, DAG
- Edges: include a directed edge from \(n_1 \) to \(n_2 \) if there is any possible way for control to transfer from block \(n_1 \) to \(n_2 \) during execution
Constructing Control Flow Graphs from Linear IRs

Algorithm
- Pass 1: Identify basic block leaders with a linear scan of the IR
- Pass 2: Identify operations that end a block and add appropriate edges to the CFG to all possible successors
- See your favorite compiler book for details

For convenience, ensure that every block ends with conditional or unconditional jump
- Code generator can pick the most convenient “fall-through” case later and eliminate unneeded jumps
Scope of Optimizations

- Optimization algorithms can work on units as small as a basic block or as large as a whole program
- Local information is generally more precise and can lead to locally optimal results
- Global information is less precise (lose information at join points in the graph), but exposes opportunities for improvements across basic blocks
Optimization Categories (1)

- *Local methods*
 - Usually confined to basic blocks
 - Simplest to analyze and understand
 - Most precise information
Optimization Categories (2)

Superlocal methods

- Operate over *Extended Basic Blocks* (EBBs)
 - An EBB is a set of blocks b_1, b_2, \ldots, b_n where b_1 has multiple predecessors and each of the remaining blocks $b_i (2 \leq i \leq n)$ have only b_{i-1} as its unique predecessor
 - The EBB is entered only at b_1, but may have multiple exits
 - A single block b_i can be the head of multiple EBBs (these EBBs form a tree rooted at b_i)
- Use information discovered in earlier blocks to improve code in successors
Optimization Categories (3)

- Regional methods
 - Operate over scopes larger than an EBB but smaller than an entire procedure/function/method
 - Typical example: loop body
 - Difference from superlocal methods is that there may be merge points in the graph (i.e., a block with two or more predecessors)
Optimization Categories (4)

- **Global methods**
 - Operate over entire procedures
 - Sometimes called *intraprocedural* methods
 - Motivation is that local optimizations sometimes have bad consequences in larger context
 - Procedure/method/function is a natural unit for analysis, separate compilation, etc.
 - Almost always need global *data-flow* analysis information for these
Optimization Categories (5)

- **Whole-program methods**
 - Operate over more than one procedure
 - Sometimes called *interprocedural* methods
 - Challenges: name scoping and parameter binding issues at procedure boundaries
 - Classic examples: inline method substitution, interprocedural constant propagation
 - Fairly common in aggressive JIT compilers and optimizing compilers for object-oriented languages
Value Numbering Revisited

- Local Value Numbering
 - 1 block at a time
 - Strong local results
 - No cross-block effects
- Missed opportunities
Superlocal Value Numbering

- Idea: apply local method to EBBs
 - \{A,B\}, \{A,C,D\}, \{A,C,E\}
- Final info from A is initial info for B, C; final info from C is initial for D, E
- Gets reuse from ancestors
- Avoid reanalyzing A, C
- Doesn’t help with F, G

\[m = a + b \]
\[n = a + b \]
\[p = c + d \]
\[r = c + d \]
\[q = a + b \]
\[r = c + d \]
\[e = b + 18 \]
\[s = a + b \]
\[u = e + f \]
\[e = a + 17 \]
\[t = c + d \]
\[u = e + f \]
\[v = a + b \]
\[w = c + d \]
\[x = e + f \]
\[y = a + b \]
\[z = c + d \]
SSA Name Space (from before)

Code
\[a_0^3 = x_0^1 + y_0^2 \]
\[b_0^3 = x_0^1 + y_0^2 \]
\[a_1^4 = 17 \]
\[c_0^3 = x_0^1 + y_0^2 \]

Rewritten
\[a_0^3 = x_0^1 + y_0^2 \]
\[b_0^3 = a_0^3 \]
\[a_1^4 = 17 \]
\[c_0^3 = a_0^3 \]

- Unique name for each definition
- Name \(\Leftrightarrow \) VN
- \(a_0^3 \) is available to assign to \(c_0^3 \)
SSA Name Space

- Two Principles
 - Each name is defined by exactly one operation
 - Each operand refers to exactly one definition

- Need to deal with merge points
 - Add Φ functions at merge points to reconcile names
 - Use subscripts on variable names for uniqueness
Superlocal Value Numbering with All Bells & Whistles

- Finds more redundancies
- Little extra cost
- Still does nothing for F and G
Larger Scopes

- Still have not helped F and G
- Problem: multiple predecessors
- Must decide what facts hold in F and in G
 - For G, combine B & F?
 - Merging states is expensive
 - Fall back on what we know

\[
\begin{align*}
A & : m_0 = a_0 + b_0 \\
 & n_0 = a_0 + b_0 \\
B & : p_0 = c_0 + d_0 \\
 & r_0 = c_0 + d_0 \\
C & : q_0 = a_0 + b_0 \\
 & r_1 = c_0 + d_0 \\
D & : e_0 = b_0 + 18 \\
 & s_0 = a_0 + b_0 \\
 & u_0 = e_0 + f_0 \\
E & : e_1 = a_0 + 17 \\
 & t_0 = c_0 + d_0 \\
 & u_1 = e_1 + f_0 \\
F & : e_2 = \Phi(e_0, e_1) \\
 & u_2 = \Phi(u_0, u_1) \\
G & : r_2 = \Phi(r_0, r_1) \\
 & y_0 = a_0 + b_0 \\
 & z_0 = c_0 + d_0
\end{align*}
\]
Dominators

- Definition
 - \(x \text{ dominates} \ y \) iff every path from the entry of the control-flow graph to \(y \) includes \(x \)
 - By definition, \(x \) dominates \(x \)
 - Associate a Dom set with each node
 - \(| \text{Dom}(x) | \geq 1 \)
 - Many uses in analysis and transformation
 - Finding loops, building SSA form, code motion
Immediate Dominators

- For any node x, there is a y in $\text{Dom}(x)$ closest to x
- This is the *immediate dominator* of x
 - Notation: $\text{IDom}(x)$
Dominator Sets

Block Dom IDom

A
\[m_0 = a_0 + b_0 \]
\[n_0 = a_0 + b_0 \]

B
\[p_0 = c_0 + d_0 \]
\[r_0 = c_0 + d_0 \]

C
\[q_0 = a_0 + b_0 \]
\[r_1 = c_0 + d_0 \]

D
\[e_0 = b_0 + 18 \]
\[s_0 = a_0 + b_0 \]
\[u_0 = e_0 + f_0 \]

E
\[e_1 = a_0 + 17 \]
\[t_0 = c_0 + d_0 \]
\[u_1 = e_1 + f_0 \]

F
\[e_2 = \Phi(e_0,e_1) \]
\[u_2 = \Phi(u_0,u_1) \]

G
\[r_2 = \Phi(r_0,r_1) \]
\[y_0 = a_0 + b_0 \]
\[z_0 = c_0 + d_0 \]

\[e_0 = b_0 + 18 \]
\[s_0 = a_0 + b_0 \]
\[u_0 = e_0 + f_0 \]
\[e_1 = a_0 + 17 \]
\[t_0 = c_0 + d_0 \]
\[u_1 = e_1 + f_0 \]
\[e_2 = \Phi(e_0,e_1) \]
\[u_2 = \Phi(u_0,u_1) \]
\[r_2 = \Phi(r_0,r_1) \]
\[y_0 = a_0 + b_0 \]
\[z_0 = c_0 + d_0 \]
Dominator Value Numbering

- Still looking for a way to handle F and G
- Idea: Use info from IDom(x) to start analysis of x
 - Use C for F and A for G
- Dominator VN Technique (DVNT)
DVNT algorithm

- Use superlocal algorithm on extended basic blocks
 - Use scoped hash tables & SSA name space as before
- Start each node with table from its IDOM
- No values flow along back edges (i.e., loops)
- Constant folding, algebraic identities as before
Dominator Value Numbering

- **Advantages**
 - Finds more redundancy
 - Little extra cost

- **Shortcomings**
 - Misses some opportunities (common calculations in ancestors that are not IDOMs)
 - Doesn’t handle loops or other back edges

Graph:

- **A**
 - \(m_0 = a_0 + b_0 \)
 - \(n_0 = a_0 + b_0 \)

- **B**
 - \(p_0 = c_0 + d_0 \)
 - \(r_0 = c_0 + d_0 \)

- **C**
 - \(q_0 = a_0 + b_0 \)
 - \(r_1 = c_0 + d_0 \)

- **D**
 - \(e_0 = b_0 + 18 \)
 - \(s_0 = a_0 + b_0 \)
 - \(u_0 = e_0 + f_0 \)

- **E**
 - \(e_1 = a_0 + 17 \)
 - \(t_0 = c_0 + d_0 \)
 - \(u_1 = e_1 + f_0 \)

- **F**
 - \(e_2 = \Phi(e_0, e_1) \)
 - \(u_2 = \Phi(u_0, u_1) \)
 - \(v_0 = a_0 + b_0 \)
 - \(w_0 = c_0 + d_0 \)
 - \(x_0 = e_2 + f_0 \)

- **G**
 - \(r_2 = \Phi(r_0, r_1) \)
 - \(y_0 = a_0 + b_0 \)
 - \(z_0 = c_0 + d_0 \)
The Story So Far...

- Local algorithm
- Superlocal extension
 - Some local methods extend cleanly to superlocal scopes
- Dominator VN Technique (DVNT)
- All of these propagate along forward edges
- None are global
Coming Attractions

- Data-flow analysis
 - Provides global solution to redundant expression analysis
 - Catches some things missed by DVNT, but misses some others
 - Generalizes to many other analysis problems, both forward and backward

- Transformations
 - A catalog of some of the things a compiler can do with the analysis information