
2/12/2008 © 2002-08 Hal Perkins & UW CSE P-1

CSE P 501 – Compilers

Register Allocation

Hal Perkins

Winter 2008

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-2

Agenda

 Register allocation constraints

 Top-down and bottom-up local
allocation

 Global allocation – register coloring

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-3

k

 Intermediate code typically assumes infinite
number of registers

 Real machine has k registers available

 Goals

 Produce correct code that uses k or fewer
registers

 Minimize added loads and stores

 Minimize space needed for spilled values

 Do this efficiently – O(n), O(n log n), maybe O(n2)

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-4

Register Allocation

 Task
 At each point in the code, pick the values

to keep in registers

 Insert code to move values between
registers and memory
 No additional transformations – scheduling

should have done its job

 Minimize inserted code, both dynamically
and statically

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-5

Allocation vs Assignment

 Allocation: deciding which values to
keep in registers

 Assignment: choosing specific registers
for values

 Compiler must do both

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-6

Basic Blocks

 A basic block is a maximal length segment of
straight-line code (i.e., no branches)

 Significance

 If any statement executes, they all execute

 Barring exceptions or other unusual circumstances

 Execution totally ordered

 Many techniques for improving basic blocks –
simplest and strongest methods

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-7

Local Register Allocation

 Transformation on basic blocks

 Produces decent register usage inside a
block

 Need to be careful of inefficiencies at
boundaries between blocks

 Global register allocation can do better,
but is more complex

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-8

Allocation Constraints

 Allocator typically won’t allocate all
registers to IR values

 Generally reserve some minimal set of
registers F used only for spilling (i.e.,
don’t dedicate to a particular value

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-9

Liveness

 A value is live between its definition
and use.

 Find definitions (x = …) and uses
(… = … x …)

 Live range is the interval from definition to
last use

 Can represent live range as an interval [i,j] in
the block

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-10

Top-Down Allocator

 Idea

 Keep busiest values in a dedicated registers

 Use reserved set, F, for the rest

 Algorithm

 Rank values by number of occurrences

 Allocate first k-F values to registers

 Add code to move other values between reserved
registers and memory

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-11

Bottom-Up Allocator

 Idea
 Focus on replacement rather than allocation

 Keep values used “soon” in registers

 Algorithm
 Start with empty register set

 Load on demand

 When no register available, free one

 Replacement
 Spill value whose next use is farthest in the future

 Prefer clean value to dirty value

 Sound familiar?

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-12

Bottom-Up Allocator

 Invented about once per decade

 Sheldon Best, 1955, for Fortran I

 Laslo Belady, 1965, for analyzing paging
algorithms

 William Harrison, 1975, ECS compiler work

 Chris Fraser, 1989, LCC compiler

 Vincenzo Liberatore, 1997, Rutgers

 Will be reinvented again, no doubt

 Many arguments for optimality of this

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-13

Global Register Allocation

 A standard technique is graph coloring
 Use control and dataflow graphs to derive

interference graph
 Nodes are virtual registers (the infinite set)
 Edge between (t1,t2) when t1 and t2 cannot be assigned to

the same register
 Most commonly, t1 and t2 are both live at the same time
 Can also use to express constraints about registers, etc.

 Then color the nodes in the graph
 Two nodes connected by an edge may not have same color
 If more than k colors are needed, insert spill code

 Disclaimer: this works great if there are “enough”
registers – not as good on x86 machines

Coloring by Simplification

 Linear-time approximation that
generally gives good results
1. Build: Construct the interference graph

2. Simplify: Color the graph by repeatedly
simplification

3. Spill: If simplify cannot reduce the graph
completely, mark some node for spilling

4. Select: Assign colors to nodes in the
graph

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-14

1. Build

 Construct the interference graph using
dataflow analysis to compute the set of
temporaries simultaneously live at each
program point

 Add an edge in the graph for each pair of
temporaries in the set

 Repeat for all program points

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-15

2. Simplify

 Heuristic: Assume we have K registers

 Find a node m with fewer than K neighbors

 Remove m from the graph. If the resulting
graph can be colored, then so can the original
graph (the neighbors of m have at most K-1
colors among them)

 Repeat by removing and pushing on a stack all
nodes with degree less than K
 Each simplification decreases other node degrees

– more simplifications possible

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-16

3. Spill

 If simplify stops because all nodes have
degree ≥ k, mark some node for spilling
 This node is in memory during execution

  Spilled node no longer interferes with
remaining nodes, reducing their degree.

 Continue by removing spilled node and
push on the stack (optimistic – hope that
spilled node does not interfer with
remaining nodes)

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-17

4. Select

 Assign nodes to colors in the graph:

 Start with empty graph

 Rebuild original graph by repeatedly
adding node from top of the stack

 (When we do this, there must be a color for it)

 When a potential spill node is popped it
may not be colorable (neighbors may have
k colors already). This is an actual spill –
no color assigned

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-18

5. Start Over

 If Select phase cannot color some node
(must be a potential spill node), add to the
program loads before each use and stores
after each definition

 Creates new temporaries with tiny live ranges

 Repeat from beginning

 Iterate until Simplify succeeds

 In practice a couple of iterations are enough

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-19

Complications

 Need to deal with irregularities in the
register set
 Some operations require dedicated

registers (idiv in x86, split address/data
registers in M68k and othres)

 Register conventions like function results,
use of registers across calls, etc.

 Model by precoloring nodes, adding
constraints in the graph

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-20

2/12/2008 © 2002-08 Hal Perkins & UW CSE P-21

Coming Attractions

 Dataflow and Control flow analysis

 Overview of optimizations

