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Agenda

 Compiler back-end organization

 Low-level intermediate representations

 Trees

 Linear

 Instruction selection algorithms

 Tree pattern matching

 Peephole matching
 Credits: Much of this material is adapted from slides by Keith Cooper 

(Rice) and material in Appel’s Modern Compiler Implementation in Java
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Big Picture

 Compiler consists of lots of fast stuff 
followed by hard problems
 Scanner: O(n)

 Parser: O(n)

 Analysis & Optimization:  ~ O(n log n)

 Instruction selection: fast or NP-Complete

 Instruction scheduling: NP-Complete

 Register allocation: NP-Complete
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Intermediate Representations

 Tree or linear?
 Closer to source language or machine?

 Source language: more context for high-level 
optimizations

 Machine: exposes opportunities for low-level 
optimizations and easier to map to actual code

 Common strategy
 Initial IR is AST, close to source
 After some optimizations, transform to lower-level 

IR, either tree or linear; use this to optimize 
further and generate code
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IR for Code Generation

 Assume a low-level RISC-like IR

 3 address, register-register instructions + 
load/store

r1 <- r2 op r3

 Could be tree structure or linear

 Expose as much detail as possible

 Assume “enough” registers

 Invent new temporaries for intermediate results

 Map to actual registers later
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Overview
Instruction Selection

 Map IR into assembly code

 Assume known storage layout and code 
shape
 i.e., the optimization phases have already 

done their thing

 Combine low-level IR operations into 
machine instructions (take advantage of 
addressing modes, etc.)
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Overview
Instruction Scheduling 

 Reorder operations to hide latencies –
processor function units; memory/cache

 Originally invented for supercomputers 
(1960s)

 Now important everywhere

 Even non-RISC machines, i.e., x86

 Even if processor reorders on the fly

 Assume fixed program
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Overview
Register Allocation

 Map values to actual registers

 Previous phases change need for registers

 Add code to spill values to temporaries 
as needed, etc.
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How Hard?

 Instruction selection
 Can make locally optimal choices
 Global is undoubtedly NP-Complete

 Instruction scheduling
 Single basic block – quick heuristics
 General problem – NP Complete

 Register allocation
 Single basic block, no spilling, interchangeable 

registers – linear
 General – NP Complete
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Conventional Wisdom

 We probably lose little by solving these independently

 Instruction selection
 Use some form of pattern matching

 Assume “enough” registers

 Instruction scheduling
 Within a block, list scheduling is close to optimal

 Across blocks: build framework to apply list scheduling

 Register allocation
 Start with virtual registers and map “enough” to K

 Targeting, use good priority heuristic
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An Simple Low-Level IR (1)

 Details not important for our purposes; point is to get 
a feeling for the level of detail involved
 This example is from Appel

 Expressions
 CONST(i) – integer constant i

 TEMP(t) – temporary t (i.e., register)

 BINOP(op,e1,e2) – application of op to e1,e2

 MEM(e) – contents of memory at address e
 Means value when used in an expression

 Means address when used on left side of assignment

 CALL(f,args) – application of function f to argument list args
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Simple Low-Level IR (2)

 Statements
 MOVE(TEMP t, e) – evaluate e and store in temporary t

 MOVE(MEM(e1), e2) – evaluate e1 to yield address a; 
evaluate e2 and store at a

 EXP(e) – evaluate expressions e and discard result

 SEQ(s1,s2) – execute s1 followed by s2

 NAME(n) – assembly language label n

 JUMP(e) – jump to e, which can be a NAME label, or more 
compex (e.g., switch)

 CJUMP(op,e1,e2,t,f) – evaluate e1 op e2; if true jump to 
label t, otherwise jump to f

 LABEL(n) – defines location of label n in the code
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Low-Level IR Example (1)

 For a local variable at a known offset k 
from the frame pointer fp

 Linear

MEM(BINOP(PLUS, TEMP fp, CONST k))

 Tree
MEM

+

TEMP fp CONST k
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Low-Level IR Example (2)

 For an array element e(k), where each 
element takes up w storage locations

MEM

+

MEM *

e k CONST

w
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Generating Low-Level IR

 Assuming initial IR is an AST, a simple treewalk can 
be used to generate the low-level IR
 Can be done before, during, or after optimizations in the 

middle part of the compiler
 Typically AST is lowered to some lower-level IR, but maybe not final 

lowest-level one used in instruction selection

 Create registers (temporaries) for values and 
intermediate results
 Value can be safely allocated to a register when only 1 name 

can reference it
 Trouble: pointers, arrays, reference parameters

 Assign a virtual register to anything that can go into one

 Generate loads/stores for other values
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Instruction Selection Issues

 Given the low-level IR, there are many 
possible code sequences that 
implement it correctly
 e.g. to set eax to 0 on x86

mov  eax,0 xor  eax,eax

sub   eax,eax imul  eax,0

 Many machine instructions do several 
things at once – e.g., register arithmetic 
and effective address calculation
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Instruction Selection Criteria

 Several possibilities
 Fastest

 Smallest

 Minimize power consumption (ex: don’t use a 
function unit if leaving it powered-down is a win)

 Sometimes not obvious
 e.g., if one of the function units in the processor is 

idle and we can select an instruction that uses 
that unit, it effectively executes for free, even if 
that instruction wouldn’t be chosen normally
 (Some interaction with scheduling here…)



2/5/2008 © 2002-08 Hal Perkins & UW CSE N-19

Implementation

 Problem: We need some representation of 
the target machine instruction set that 
facilitates code generation

 Idea: Describe machine instructions using 
same low-level IR used for program

 Use pattern matching techniques to pick 
machine instructions that match fragments of 
the program IR tree
 Want this to run quickly
 Would like to automate as much as possible
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Matching: How?

 Tree IR – pattern match on trees
 Tree patterns as input

 Each pattern maps to target machine instruction (or 
sequence)

 Use dynamic programming or bottom-up rewrite system 
(BURS)

 Linear IR – some sort of string matching
 Strings as input

 Each string maps to target machine instruction sequence

 Use text matching or peephole matching

 Both work well in practice; actual algorithms are 
quite different



2/5/2008 © 2002-08 Hal Perkins & UW CSE N-21

An Example Target Machine (1)

 Arithmetic Instructions

 (unnamed) ri TEMP

 ADD ri <- rj + rk

 MUL ri <- rj * rk

 SUB and DIV are similar

+

*
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 Immediate Instructons

 ADDI ri <- rj + c

 SUBI ri <- rj - c

An Example Target Machine (2)

+

CONST

+

CONST

CONST

-

CONST
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 Load

 LOAD  ri <- M[rj + c]

An Example Target Machine (3)

+

CONST

+

CONST

CONST

MEM MEM MEM MEM
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 Store

 STORE  M[rj + c] <- ri

An Example Target Machine (4)

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

MOVE MOVE MOVE MOVE
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Tree Pattern Matching (1)

 Goal: Tile the low-level tree with 
operation (instruction) trees

 A tiling is a collection of <node,op> 
pairs

 node is a node in the tree

 op is an operation tree

 <node,op> means that op could 
implement the subtree at node
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Tree Pattern Matching  (2)

 A tiling “implements” a tree if it covers every 
node in the tree and the overlap between any 
two tiles (trees) is limited to a single node

 If <node,op> is in the tiling, then node is also 
covered by a leaf in another operation tree in the 
tiling – unless it is the root

 Where two operation trees meet, they must be 
compatible (i.e., expect the same value in the 
same location)
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Generating Code

 Given a tiled tree, to generate code

 Postorder treewalk; node-dependant order 
for children

 Emit code sequences corresponding to tiles 
in order

 Connect tiles by using same register name 
to tie boundaries together
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Tiling Algorithm

 There may be many tiles that could 
match at a particular node

 Idea: Walk the tree and accumulate the 
set of all possible tiles that could match 
at that point – Tiles(n)
 Later: can keep lowest cost match at each 

point

 Generates local optimality – lowest cost 
match at each point
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Tile(Node n)

Tiles(n) <- empty;
if n has two children then

Tile(left child of n)
Tile(right child of n)
for each rule r that implements n
if (left(r) is in Tiles(left(n)) and right(r) is in Tiles(right(n)))

Tiles(n) <- Tiles(n) + r
else if n has one child then

Tile(child of n)
for each rule r that implements n

if(left(r) is in Tiles(child(n)))
Tiles(n) <- Tiles(n) + r

else /* n is a leaf */
Tiles(n) <- { all rules that implement n }
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Peephole Matching

 A code generaton/improvement 
strategy for linear representations

 Basic idea

 Look at small sequences of adjacent 
operations

 Compiler moves a sliding window 
(“peephole”) over the code and looks for 
improvements
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Peephole Optimizations (1)

 Classic example: store followed by a 
load, or push followed by a pop

original improved

mov [ebp-8],eax mov [ebp-8],eax

mov eax,[ebp-8]

push  eax ---

pop    eax
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Peephole Optimizations (2)

 Simple algebraic identies
original improved

add  eax,0 ---

add  eax,1 inc eax

mul  eax,2 add eax,eax

mul  eax,4 shl  eax,2
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Peephole Optimizations (3)

 Jump to a Jump
original improved

jmp  here jmp  there

here:  jmp there
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Implementing Peephole 
Matching

 Early versions

 Limited set of hand-coded patterns

 Modest window size to ensure speed

 Modern

 Break problem in to expander, simplifier, 
matcher

 Apply symbolic interpretation and 
simplification systematically
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Expander

 Turn IR code into very low-level IR 
(LLIR)

 Template-driven rewriting

 LLIR includes all direct effects of 
instructions, e.g., setting condition 
codes

 Big, although constant size expansion
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Simplifier

 Look at LLIR through window and 
rewrite using

 Forward substitution

 Algebraic simplification

 Local constant propagation

 Eliminate dead code

 This is the heart of the processing
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Matcher

 Compare simplified LLIR against library 
of patterns

 Pick low-cost pattern that captures 
effects

 Must preserve LLIR effects; can add 
new ones (condition codes, etc.)

 Generates assembly code output
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Peephole Optimization 
Considered

 LLIR is largely machine independent (RTL)

 Target machine description is LLIR -> ASM 
patterns

 Pattern matching
 Use hand-coded matcher  (classical gcc)

 Turn patterns into grammar and use LR parser

 Used in several important compilers

 Seems to produce good portable instruction 
selectors
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Coming Attractions

 Instruction Scheduling

 Register Allocation

 Optimization

 Supporting technologies (if time)

 Memory management & garbage collection

 Virtual machines, portability, and security


