
2/5/2008 © 2002-08 Hal Perkins & UW CSE N-1

CSE P 501 – Compilers

Instruction Selection

Hal Perkins

Winter 2008

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-2

Agenda

 Compiler back-end organization

 Low-level intermediate representations

 Trees

 Linear

 Instruction selection algorithms

 Tree pattern matching

 Peephole matching
 Credits: Much of this material is adapted from slides by Keith Cooper

(Rice) and material in Appel’s Modern Compiler Implementation in Java

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-3

Compiler Organization
p
a
rs

e

sc
a
n

se
m

a
n
ti
cs

front end
o
p
t2

o
p
t1

o
p
tn

middle

is
n
tr
.
sc

h
e
d

in
st

r.
 s

e
le

ct

re
g
.
a
llo

c

back end

infrastructure – symbol tables, trees, graphs, etc

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-4

Big Picture

 Compiler consists of lots of fast stuff
followed by hard problems
 Scanner: O(n)

 Parser: O(n)

 Analysis & Optimization: ~ O(n log n)

 Instruction selection: fast or NP-Complete

 Instruction scheduling: NP-Complete

 Register allocation: NP-Complete

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-5

Intermediate Representations

 Tree or linear?
 Closer to source language or machine?

 Source language: more context for high-level
optimizations

 Machine: exposes opportunities for low-level
optimizations and easier to map to actual code

 Common strategy
 Initial IR is AST, close to source
 After some optimizations, transform to lower-level

IR, either tree or linear; use this to optimize
further and generate code

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-6

IR for Code Generation

 Assume a low-level RISC-like IR

 3 address, register-register instructions +
load/store

r1 <- r2 op r3

 Could be tree structure or linear

 Expose as much detail as possible

 Assume “enough” registers

 Invent new temporaries for intermediate results

 Map to actual registers later

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-7

Overview
Instruction Selection

 Map IR into assembly code

 Assume known storage layout and code
shape
 i.e., the optimization phases have already

done their thing

 Combine low-level IR operations into
machine instructions (take advantage of
addressing modes, etc.)

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-8

Overview
Instruction Scheduling

 Reorder operations to hide latencies –
processor function units; memory/cache

 Originally invented for supercomputers
(1960s)

 Now important everywhere

 Even non-RISC machines, i.e., x86

 Even if processor reorders on the fly

 Assume fixed program

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-9

Overview
Register Allocation

 Map values to actual registers

 Previous phases change need for registers

 Add code to spill values to temporaries
as needed, etc.

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-10

How Hard?

 Instruction selection
 Can make locally optimal choices
 Global is undoubtedly NP-Complete

 Instruction scheduling
 Single basic block – quick heuristics
 General problem – NP Complete

 Register allocation
 Single basic block, no spilling, interchangeable

registers – linear
 General – NP Complete

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-11

Conventional Wisdom

 We probably lose little by solving these independently

 Instruction selection
 Use some form of pattern matching

 Assume “enough” registers

 Instruction scheduling
 Within a block, list scheduling is close to optimal

 Across blocks: build framework to apply list scheduling

 Register allocation
 Start with virtual registers and map “enough” to K

 Targeting, use good priority heuristic

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-12

An Simple Low-Level IR (1)

 Details not important for our purposes; point is to get
a feeling for the level of detail involved
 This example is from Appel

 Expressions
 CONST(i) – integer constant i

 TEMP(t) – temporary t (i.e., register)

 BINOP(op,e1,e2) – application of op to e1,e2

 MEM(e) – contents of memory at address e
 Means value when used in an expression

 Means address when used on left side of assignment

 CALL(f,args) – application of function f to argument list args

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-13

Simple Low-Level IR (2)

 Statements
 MOVE(TEMP t, e) – evaluate e and store in temporary t

 MOVE(MEM(e1), e2) – evaluate e1 to yield address a;
evaluate e2 and store at a

 EXP(e) – evaluate expressions e and discard result

 SEQ(s1,s2) – execute s1 followed by s2

 NAME(n) – assembly language label n

 JUMP(e) – jump to e, which can be a NAME label, or more
compex (e.g., switch)

 CJUMP(op,e1,e2,t,f) – evaluate e1 op e2; if true jump to
label t, otherwise jump to f

 LABEL(n) – defines location of label n in the code

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-14

Low-Level IR Example (1)

 For a local variable at a known offset k
from the frame pointer fp

 Linear

MEM(BINOP(PLUS, TEMP fp, CONST k))

 Tree
MEM

+

TEMP fp CONST k

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-15

Low-Level IR Example (2)

 For an array element e(k), where each
element takes up w storage locations

MEM

+

MEM *

e k CONST

w

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-16

Generating Low-Level IR

 Assuming initial IR is an AST, a simple treewalk can
be used to generate the low-level IR
 Can be done before, during, or after optimizations in the

middle part of the compiler
 Typically AST is lowered to some lower-level IR, but maybe not final

lowest-level one used in instruction selection

 Create registers (temporaries) for values and
intermediate results
 Value can be safely allocated to a register when only 1 name

can reference it
 Trouble: pointers, arrays, reference parameters

 Assign a virtual register to anything that can go into one

 Generate loads/stores for other values

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-17

Instruction Selection Issues

 Given the low-level IR, there are many
possible code sequences that
implement it correctly
 e.g. to set eax to 0 on x86

mov eax,0 xor eax,eax

sub eax,eax imul eax,0

 Many machine instructions do several
things at once – e.g., register arithmetic
and effective address calculation

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-18

Instruction Selection Criteria

 Several possibilities
 Fastest

 Smallest

 Minimize power consumption (ex: don’t use a
function unit if leaving it powered-down is a win)

 Sometimes not obvious
 e.g., if one of the function units in the processor is

idle and we can select an instruction that uses
that unit, it effectively executes for free, even if
that instruction wouldn’t be chosen normally
 (Some interaction with scheduling here…)

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-19

Implementation

 Problem: We need some representation of
the target machine instruction set that
facilitates code generation

 Idea: Describe machine instructions using
same low-level IR used for program

 Use pattern matching techniques to pick
machine instructions that match fragments of
the program IR tree
 Want this to run quickly
 Would like to automate as much as possible

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-20

Matching: How?

 Tree IR – pattern match on trees
 Tree patterns as input

 Each pattern maps to target machine instruction (or
sequence)

 Use dynamic programming or bottom-up rewrite system
(BURS)

 Linear IR – some sort of string matching
 Strings as input

 Each string maps to target machine instruction sequence

 Use text matching or peephole matching

 Both work well in practice; actual algorithms are
quite different

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-21

An Example Target Machine (1)

 Arithmetic Instructions

 (unnamed) ri TEMP

 ADD ri <- rj + rk

 MUL ri <- rj * rk

 SUB and DIV are similar

+

*

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-22

 Immediate Instructons

 ADDI ri <- rj + c

 SUBI ri <- rj - c

An Example Target Machine (2)

+

CONST

+

CONST

CONST

-

CONST

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-23

 Load

 LOAD ri <- M[rj + c]

An Example Target Machine (3)

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-24

 Store

 STORE M[rj + c] <- ri

An Example Target Machine (4)

+

CONST

+

CONST

CONST

MEM MEM MEM MEM

MOVE MOVE MOVE MOVE

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-25

Tree Pattern Matching (1)

 Goal: Tile the low-level tree with
operation (instruction) trees

 A tiling is a collection of <node,op>
pairs

 node is a node in the tree

 op is an operation tree

 <node,op> means that op could
implement the subtree at node

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-26

Tree Pattern Matching (2)

 A tiling “implements” a tree if it covers every
node in the tree and the overlap between any
two tiles (trees) is limited to a single node

 If <node,op> is in the tiling, then node is also
covered by a leaf in another operation tree in the
tiling – unless it is the root

 Where two operation trees meet, they must be
compatible (i.e., expect the same value in the
same location)

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-27

Generating Code

 Given a tiled tree, to generate code

 Postorder treewalk; node-dependant order
for children

 Emit code sequences corresponding to tiles
in order

 Connect tiles by using same register name
to tie boundaries together

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-28

Tiling Algorithm

 There may be many tiles that could
match at a particular node

 Idea: Walk the tree and accumulate the
set of all possible tiles that could match
at that point – Tiles(n)
 Later: can keep lowest cost match at each

point

 Generates local optimality – lowest cost
match at each point

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-29

Tile(Node n)

Tiles(n) <- empty;
if n has two children then

Tile(left child of n)
Tile(right child of n)
for each rule r that implements n
if (left(r) is in Tiles(left(n)) and right(r) is in Tiles(right(n)))

Tiles(n) <- Tiles(n) + r
else if n has one child then

Tile(child of n)
for each rule r that implements n

if(left(r) is in Tiles(child(n)))
Tiles(n) <- Tiles(n) + r

else /* n is a leaf */
Tiles(n) <- { all rules that implement n }

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-30

Peephole Matching

 A code generaton/improvement
strategy for linear representations

 Basic idea

 Look at small sequences of adjacent
operations

 Compiler moves a sliding window
(“peephole”) over the code and looks for
improvements

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-31

Peephole Optimizations (1)

 Classic example: store followed by a
load, or push followed by a pop

original improved

mov [ebp-8],eax mov [ebp-8],eax

mov eax,[ebp-8]

push eax ---

pop eax

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-32

Peephole Optimizations (2)

 Simple algebraic identies
original improved

add eax,0 ---

add eax,1 inc eax

mul eax,2 add eax,eax

mul eax,4 shl eax,2

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-33

Peephole Optimizations (3)

 Jump to a Jump
original improved

jmp here jmp there

here: jmp there

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-34

Implementing Peephole
Matching

 Early versions

 Limited set of hand-coded patterns

 Modest window size to ensure speed

 Modern

 Break problem in to expander, simplifier,
matcher

 Apply symbolic interpretation and
simplification systematically

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-35

Expander

 Turn IR code into very low-level IR
(LLIR)

 Template-driven rewriting

 LLIR includes all direct effects of
instructions, e.g., setting condition
codes

 Big, although constant size expansion

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-36

Simplifier

 Look at LLIR through window and
rewrite using

 Forward substitution

 Algebraic simplification

 Local constant propagation

 Eliminate dead code

 This is the heart of the processing

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-37

Matcher

 Compare simplified LLIR against library
of patterns

 Pick low-cost pattern that captures
effects

 Must preserve LLIR effects; can add
new ones (condition codes, etc.)

 Generates assembly code output

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-38

Peephole Optimization
Considered

 LLIR is largely machine independent (RTL)

 Target machine description is LLIR -> ASM
patterns

 Pattern matching
 Use hand-coded matcher (classical gcc)

 Turn patterns into grammar and use LR parser

 Used in several important compilers

 Seems to produce good portable instruction
selectors

2/5/2008 © 2002-08 Hal Perkins & UW CSE N-39

Coming Attractions

 Instruction Scheduling

 Register Allocation

 Optimization

 Supporting technologies (if time)

 Memory management & garbage collection

 Virtual machines, portability, and security

