CSE P 501 – Compilers

LL and Recursive-Descent Parsing
Hal Perkins
Winter 2008
Agenda

- Top-Down Parsing
- Predictive Parsers
- LL(k) Grammars
- Recursive Descent
- Grammar Hacking
 - Left recursion removal
 - Factoring
Basic Parsing Strategies (1)

- Bottom-up
 - Build up tree from leaves
 - Shift next input or reduce a handle
 - Accept when all input read and reduced to start symbol of the grammar
 - LR(k) and subsets (SLR(k), LALR(k), ...)

remaining input
Basic Parsing Strategies (2)

- **Top-Down**
 - Begin at root with start symbol of grammar
 - Repeatedly pick a non-terminal and expand
 - Success when expanded tree matches input
 - LL(k)
Top-Down Parsing

- Situation: have completed part of a derivation
 \[S \Rightarrow^* \text{wA}_\alpha \Rightarrow^* \text{wxy} \]
- Basic Step: Pick some production
 \[A ::= \beta_1 \beta_2 \ldots \beta_n \]
 that will properly expand \(A \) to match the input
 - Want this to be deterministic
Predictive Parsing

- If we are located at some non-terminal A, and there are two or more possible productions

 $$A ::= \alpha$$
 $$A ::= \beta$$

 we want to make the correct choice by looking at just the next input symbol

- If we can do this, we can build a predictive parser that can perform a top-down parse without backtracking
Example

- Programming language grammars are often suitable for predictive parsing
- Typical example

\[
stmt ::= id = exp ; \mid \text{return exp} ; \\
\quad | \text{if (exp) stmt} \mid \text{while (exp) stmt}
\]

If the first part of the unparsed input begins with the tokens

\[
\text{IF LPAREN ID(x) ...}
\]

we should expand \(stmt \) to an if-statement
LL(k) Property

- A grammar has the LL(1) property if, for all non-terminals A, if productions $A ::= \alpha$ and $A ::= \beta$ both appear in the grammar, then it is the case that $\text{FIRST}(\alpha) \cap \text{FIRST}(\beta) = \emptyset$

- If a grammar has the LL(1) property, we can build a predictive parser for it that uses 1-symbol lookahead
LL(k) Parsers

- An LL(k) parser
 - Scans the input left to right
 - Constructs a leftmost derivation
 - Looking ahead at most k symbols
- 1-symbol lookahead is enough for many practical programming language grammars
 - LL(k) for k>1 is very rare in practice
Table-Driven LL(k) Parsers

- As with LR(k), a table-driven parser can be constructed from the grammar

Example
1. \(S ::= (S) S \)
2. \(S ::= [S] S \)
3. \(S ::= \varepsilon \)

Table

| | (|) | [|] | $ |
|----|----|----|----|----|
| S | 1 | 3 | 2 | 3 | 3 |
LL vs LR (1)

- Table-driven parsers for both LL and LR can be automatically generated by tools.
- LL(1) has to make a decision based on a single non-terminal and the next input symbol.
- LR(1) can base the decision on the entire left context (i.e., contents of the stack) as well as the next input symbol.
LL vs LR (2)

- :: LR(1) is more powerful than LL(1)
 - Includes a larger set of grammars
- :: (editorial opinion) If you’re going to use a tool-generated parser, might as well use LR
 - But there are some very good LL parser tools out there (ANTLR, JavaCC, ...) that might win for non-LLvsLR reasons
Recursive-Descent Parsers

- An advantage of top-down parsing is that it is easy to implement by hand
- Key idea: write a function (procedure, method) corresponding to each non-terminal in the grammar
 - Each of these functions is responsible for matching its non-terminal with the next part of the input
Example: Statements

- Grammar
 \[stmt ::= id = exp ; \]
 | return exp ;
 | if (exp) stmt
 | while (exp) stmt

- Method for this grammar rule

  ```
  // parse stmt ::= id=exp; | ...
  void stmt( ) {
    switch(nextToken) {
      RETURN: returnStmt(); break;
      IF: ifStmt(); break;
      WHILE: whileStmt(); break;
      ID: assignStmt(); break;
    }
  }
  ```
Example (cont)

// parse while (exp) stmt
void whileStmt() {
 // skip "while ("
 getNextToken();
 getNextToken();

 // parse condition
 exp();

 // skip ")"
 getNextToken();

 // parse stmt
 stmt();
}

// parse return exp ;
void returnStmt() {
 // skip "return"
 getNextToken();

 // parse expression
 exp();

 // skip ";"
 getNextToken();
}

Invariant for Functions

- The parser functions need to agree on where they are in the input

Useful invariant: When a parser function is called, the current token (next unprocessed piece of the input) is the token that begins the expanded non-terminal being parsed

- Corollary: when a parser function is done, it must have completely consumed input correspond to that non-terminal
Possible Problems

- Two common problems for recursive-descent (and LL(1)) parsers
 - Left recursion (e.g., $E ::= E + T \mid \ldots$)
 - Common prefixes on the right hand side of productions
Left Recursion Problem

- Grammar rule
 \[expr ::= expr + term \]
 \[\mid term \]

- Code
  ```
  // parse expr ::= ...
  void expr() {
    expr();
    if (current token is PLUS) {
      getNextToken();
      term();
    }
  }
  ```

- And the bug is?????
Left Recursion Problem

- If we code up a left-recursive rule as-is, we get an infinite recursion
- Non-solution: replace with a right-recursive rule
 \[
 expr ::= \text{term} + expr \mid \text{term}
 \]
 - Why isn’t this the right thing to do?
Left Recursion Solution

- Rewrite using right recursion and a new non-terminal
- Original: \(expr ::= expr + term \mid term \)
- New
 \[
 expr ::= term exprtail \\
 exprtail ::= + term exprtail \mid \varepsilon
 \]

- Properties
 - No infinite recursion if coded up directly
 - Maintains left associatively (required)
Another Way to Look at This

- Observe that

 \[expr ::= expr + term \mid term \]

 generates the sequence

 \[term + term + term + \ldots + term \]

- We can sugar the original rule to show this

 \[expr ::= term \{ + term \}^* \]

- This leads directly to parser code
// parse
// expr ::= term { + term }*
void expr() {
 term();
 while (next symbol is PLUS) {
 getNextToken();
 term()
 }
}

// parse
// term ::= factor { * factor }*
void term() {
 factor();
 while (next symbol is TIMES) {
 getNextToken();
 term()
 }
}
Code for Expressions (2)

// parse
// factor ::= int | id | (expr)
void factor() {

 switch(nextToken) {

 case INT:
 process int constant;
 getNextToken();
 break;

 case ID:
 process identifier;
 getNextToken();
 break;

 case LPAREN:
 getNextToken();
 expr();
 getNextToken();
 break;

 ...
 }
}
What About Indirect Left Recursion?

- A grammar might have a derivation that leads to a left recursion
 \[A \Rightarrow \beta_1 \Rightarrow^* \beta_n \Rightarrow A\gamma \]

- There are systematic ways to factor such grammars
 - See the book
Left Factoring

- If two rules for a non-terminal have right hand sides that begin with the same symbol, we can’t predict which one to use
- Solution: Factor the common prefix into a separate production
Left Factoring Example

- Original grammar
 \[
 \text{ifStmt} ::= \text{if (expr) stmt} \\
 \quad | \text{if (expr) stmt else stmt}
 \]

- Factored grammar
 \[
 \text{ifStmt} ::= \text{if (expr) stmt ifTail} \\
 \text{ifTail} ::= \text{else stmt} \mid \epsilon
 \]
Parsing if Statements

- But it’s easiest to just code up the “else matches closest if” rule directly

 // parse
 // if (expr) stmt [else stmt]
 void ifStmt() {
 getNextToken();
 getNextToken();
 expr();
 getNextToken();
 stmt();
 if (next symbol is ELSE) {
 getNextToken();
 stmt();
 }
 }
Another Lookahead Problem

- In languages like FORTRAN, parentheses are used for array subscripts.
- A FORTRAN grammar includes something like:

 \[
 \text{factor ::= id (subscripts) } \mid \text{id (arguments) } \mid \ldots
 \]

- When the parser sees "id (", how can it decide whether this begins an array element reference or a function call?
Two Ways to Handle $id(\ ?\)$

- Use the type of id to decide
 - Requires declare-before-use restriction if we want to parse in 1 pass
- Use a covering grammar

 $factor ::= id(\ commaSeparatedList\) \mid \ldots$

 and fix later when more information is available
Top-Down Parsing Concluded

- Works with a smaller set of grammars than bottom-up, but can be done for most sensible programming language constructs
- If you need to write a quick-n-dirty parser, recursive descent is often the method of choice
Parsing Concluded

- That’s it!
- On to the rest of the compiler
- Coming attractions
 - Intermediate representations (ASTs etc.)
 - Semantic analysis (including type checking)
 - Symbol tables
 - & more...