CSE P 501 – Compilers

LR Parsing
Hal Perkins
Winter 2008
Agenda

- LR Parsing
- Table-driven Parsers
- Parser States
- Shift-Reduce and Reduce-Reduce conflicts
LR(1) Parsing

- We’ll look at LR(1) parsers
 - Left to right scan, Rightmost derivation, 1 symbol lookahead
 - Almost all practical programming languages have an LR(1) grammar
 - LALR(1), SLR(1), etc. – subsets of LR(1)
 - LALR(1) can parse most real languages, is more compact, and is used by YACC/Bison/etc.
Bottom-Up Parsing

- Idea: Read the input left to right
- Whenever we’ve matched the right hand side of a production, reduce it to the appropriate non-terminal and add that non-terminal to the parse tree
- The upper edge of this partial parse tree is known as the frontier
Example

- Grammar

 \[S ::= aABe \]
 \[A ::= Abc \mid b \]
 \[B ::= d \]

- Bottom-up Parse

 \[a \ b \ b \ c \ d \ e \]
Details

- The bottom-up parser reconstructs a reverse rightmost derivation
- Given the rightmost derivation
 \[S \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-2} \Rightarrow \beta_{n-1} \Rightarrow \beta_n = w \]

 the parser will first discover \(\beta_{n-1} \Rightarrow \beta_n \), then \(\beta_{n-2} \Rightarrow \beta_{n-1} \), etc.
- Parsing terminates when
 - \(\beta_1 \) reduced to \(S \) (start symbol, success), or
 - No match can be found (syntax error)
How Do We Parse with This?

- Key: given what we’ve already seen and the next input symbol, decide what to do.

- Choices:
 - Perform a reduction
 - Look ahead further

- Can reduce $A \Rightarrow \beta$ if both of these hold:
 - $A \Rightarrow \beta$ is a valid production
 - $A \Rightarrow \beta$ is a step in this rightmost derivation

- This is known as a *shift-reduce* parser
Sentential Forms

- If $S =>^* \alpha$, the string α is called a *sentential form* of the grammar.
- In the derivation $S => \beta_1 => \beta_2 => ... => \beta_{n-2} => \beta_{n-1} => \beta_n = w$, each of the β_i are sentential forms.
- A sentential form in a rightmost derivation is called a right-sentential form (similarly for leftmost and left-sentential forms).
Handles

Informally, a substring of the tree frontier that matches the right side of a production

- Even if $A::=\beta$ is a production, β is a handle only if it matches the frontier at a point where $A::=\beta$ was used in the derivation
- β may appear in many other places in the frontier without being a handle for that particular production
Handles (cont.)

- Formally, a handle of a right-sentential form γ is a production $A ::= \beta$ and a position in γ where β may be replaced by A to produce the previous right-sentential form in the rightmost derivation of γ.
Handle Examples

- In the derivation

\[S => aABe => aAde => aAbcde => abbcde \]

- abbcde is a right sentential form whose handle is \(A::=b \) at position 2

- aAbcde is a right sentential form whose handle is \(A::=Abc \) at position 4
 - Note: some books take the left of the match as the position
Implementing Shift-Reduce Parsers

- Key Data structures
 - A stack holding the frontier of the tree
 - A string with the remaining input
Shift-Reduce Parser Operations

- **Reduce** – if the top of the stack is the right side of a handle $A::=\beta$, pop the right side β and push the left side A.

- **Shift** – push the next input symbol onto the stack

- **Accept** – announce success

- **Error** – syntax error discovered
Shift-Reduce Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>abbcde$</td>
<td>shift</td>
</tr>
</tbody>
</table>

Grammar:

\[
S ::= aABe \\
A ::= Abc | b \\
B ::= d
\]
How Do We Automate This?

- Def. **Viable prefix** – a prefix of a right-sentential form that can appear on the stack of the shift-reduce parser
 - Equivalent: a prefix of a right-sentential form that does not continue past the rightmost handle of that sentential form

- Idea: Construct a DFA to recognize viable prefixes given the stack and remaining input
 - Perform reductions when we recognize them
DFA for prefixes of

\[S ::= aABe \]
\[A ::= Abc \mid b \]
\[B ::= d \]
Trace

Stack
$

Input
\text{abbcde}$

\[
S ::= aABe \\
A ::= Abc \mid b \\
B ::= d
\]

\[
\begin{align*}
S &::= aABe \\
A &::= Abc \mid b \\
B &::= d
\end{align*}
\]
Observations

- Way too much backtracking
 - We want the parser to run in time proportional to the length of the input
- Where the heck did this DFA come from anyway?
 - From the underlying grammar
 - We’ll defer construction details for now
Avoiding DFA Rescanning

- Observation: after a reduction, the contents of the stack are the same as before except for the new non-terminal on top
 - ∴ Scanning the stack will take us through the same transitions as before until the last one
 - ∴ If we record state numbers on the stack, we can go directly to the appropriate state when we pop the right hand side of a production from the stack
Stack

- Change the stack to contain pairs of states and symbols from the grammar $s_0 \ X_1 \ S_1 \ X_2 \ S_2 \ ... \ X_n \ S_n$
 - State s_0 represents the accept state
 - (Not always added – depends on particular presentation)

- Observation: in an actual parser, only the state numbers need to be pushed, since they implicitly contain the symbol information, but for explanations, it’s clearer to use both.
Encoding the DFA in a Table

- A shift-reduce parser’s’s DFA can be encoded in two tables
 - One row for each state
 - *action* table encodes what to do given the current state and the next input symbol
 - *goto* table encodes the transitions to take after a reduction
Actions (1)

- Given the current state and input symbol, the main possible actions are:
 - s_i – shift the input symbol and state i onto the stack (i.e., shift and move to state i)
 - r_j – reduce using grammar production j
 - The production number tells us how many $<$symbol, state$>$ pairs to pop off the stack
Actions (2)

- Other possible *action* table entries
 - *accept*
 - blank – no transition – syntax error
 - A LR parser will detect an error as soon as possible on a left-to-right scan
 - A real compiler needs to produce an error message, recover, and continue parsing when this happens
Goto

- When a reduction is performed, \(<\text{symbol}, \text{state}>\) pairs are popped from the stack revealing a state \(uncovered_s\) on the top of the stack.

- \(\text{goto}[uncovered_s, A]\) is the new state to push on the stack when reducing production \(A ::= \beta\) (after popping \(\beta\) and finding state \(uncovered_s\) on top).
Reminder: DFA for

\[
\begin{align*}
S ::= & \text{ a } A B e \\
A ::= & \text{ A b c } \mid \text{ b } \\
B ::= & \text{ d }
\end{align*}
\]

![DFA Diagram](image)
LR Parse Table for

1. $S ::= aABe$
2. $A ::= Abc$
3. $A ::= b$
4. $B ::= d$

<table>
<thead>
<tr>
<th>State</th>
<th>action</th>
<th>goto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>s2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>s4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>r3</td>
<td>r3</td>
</tr>
<tr>
<td>5</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>r2</td>
<td>r2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>r2</td>
</tr>
<tr>
<td>9</td>
<td>r1</td>
<td>r1</td>
</tr>
</tbody>
</table>
LR Parsing Algorithm (1)

\[
\text{word} = \text{scanner.getToken}(); \\
\text{while} \ (\text{true}) \ \{ \\
\quad s = \text{top of stack}; \\
\quad \text{if} \ (\text{action}[s, \text{word}] = si) \ \{ \\
\quad\quad \text{push word; push } i \ \text{(state);} \\
\quad\quad \text{word} = \text{scanner.getToken}(); \\
\quad\} \ \text{else if} \ (\text{action}[s, \text{word}] = rj) \ \{ \\
\quad\quad \text{pop } 2 * \text{length of right side of} \\
\quad\quad \quad \text{production } j \ (2*|\beta|); \\
\quad\quad \text{uncovered}_s = \text{top of stack}; \\
\quad\quad \text{push left side } A \text{ of production } j; \\
\quad\quad \text{push state goto[uncovered}_s, A]; \\
\quad\} \\
\quad \} \ \text{else if} \ (\text{action}[s, \text{word}] = \text{accept}) \ \{ \\
\quad \text{return;} \\
\quad \} \ \text{else} \ \{ \\
\quad \quad \text{// no entry in action table} \\
\quad\quad \text{report syntax error;} \\
\quad\quad \text{halt or attempt recovery}; \\
\quad\} \\
\]
Example

Stack
$ abbcde$

Input
Stack

1. $S ::= aA\text{Be}$
2. $A ::= Abc$
3. $A ::= b$
4. $B ::= d$

<table>
<thead>
<tr>
<th>S</th>
<th>action</th>
<th>goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

1	s2	ac	g1			
2	s4		g3			
3	s6	s5	g8			
4	r3	r3	r3	r3	r3	
5	r4	r4	r4	r4	r4	
6	s7					
7	r2	r2	r2	r2	r2	
8	r2	r2	r2	r2	r2	
9	r1	r1	r1	r1	r1	
LR States

- Idea is that each state encodes
 - The set of all possible productions that we could be looking at, given the current state of the parse, and
 - *Where* we are in the right hand side of each of those productions
Items

- An *item* is a production with a dot in the right hand side
- Example: Items for production $A ::= XY$

 $A ::= .XY$
 $A ::= X.Y$
 $A ::= XY.$

- Idea: The dot represents a position in the production
DFA for

\[S ::= aABe \]
\[A ::= Abc \mid b \]
\[B ::= d \]
Problems with Grammars

- Grammars can cause problems when constructing a LR parser
 - Shift-reduce conflicts
 - Reduce-reduce conflicts
Shift-Reduce Conflicts

- Situation: both a shift and a reduce are possible at a given point in the parse (equivalently: in a particular state of the DFA)

- Classic example: if-else statement
 \[S ::= \text{ifthen } S \mid \text{ifthen } S \text{ else } S \]
Parser States for

1. \(S ::= \) ifthen \(S \)
2. \(S ::= \) ifthen \(S \) else \(S \)

- State 3 has a shift-reduce conflict
 - Can shift past else into state 4 (s4)
 - Can reduce (r1)
 \(S ::= \) ifthen \(S \)

(Note: other \(S ::= \) .ifthen items not included in states 2-4 to save space)
Solving Shift-Reduce Conflicts

- Fix the grammar
 - Done in Java reference grammar, others
- Use a parse tool with a “longest match” rule – i.e., if there is a conflict, choose to shift instead of reduce
 - Does exactly what we want for if-else case
 - Guideline: a few shift-reduce conflicts are fine, but be sure they do what you want
Reduce-Reduce Conflicts

- Situation: two different reductions are possible in a given state
- Contrived example

\[
S ::= A \\
S ::= B \\
A ::= x \\
B ::= x
\]
Parser States for

State 2 has a reduce-reduce conflict (r3, r4)

1. $S ::= A$
2. $S ::= B$
3. $A ::= x$
4. $B ::= x$
Handling Reduce-Reduce Conflicts

- These normally indicate a serious problem with the grammar.
- Fixes
 - Use a different kind of parser generator that takes lookahead information into account when constructing the states (LR(1) instead of SLR(1) for example)
 - Most practical tools use this information
 - Fix the grammar
Another Reduce-Reduce Conflict

- Suppose the grammar separates arithmetic and boolean expressions

\[
\begin{align*}
expr & ::= aexp \mid bexp \\
aexp & ::= aexp * aident \mid aident \\
bexp & ::= bexp && bident \mid bident \\
aident & ::= id \\
bident & ::= id
\end{align*}
\]

- This will create a reduce-reduce conflict
Covering Grammars

- A solution is to merge `aident` and `bident` into a single non-terminal (or use `id` in place of `aident` and `bident` everywhere they appear)
- This is a covering grammar
 - Includes some programs that are not generated by the original grammar
 - Use the type checker or other static semantic analysis to weed out illegal programs later
Coming Attractions

- Constructing LR tables
 - We’ll present a simple version (SLR(0)) in lecture, then talk about extending it to LR(1)
- LL parsers and recursive descent
- Continue reading ch. 4