CSE P 501 – Compilers

LL and Recursive-Descent Parsing
Hal Perkins
Summer 2004

Agenda
- Top-Down Parsing
- Predictive Parsers
- LL(k) Grammars
- Recursive Descent
- Grammar Hacking
 - Left recursion removal
 - Factoring

Basic Parsing Strategies (1)
- Bottom-up
 - Build up tree from leaves
 - Shift next input or reduce a handle
 - Accept when all input read and reduced to start symbol of the grammar
 - LR(k) and subsets (SLR(k), LALR(k), ...)

Basic Parsing Strategies (2)
- Top-Down
 - Begin at root with start symbol of grammar
 - Repeatedly pick a non-terminal and expand
 - Success when expanded tree matches input
 - LL(k)

Top-Down Parsing
- Situation: have completed part of a derivation
 \[S \Rightarrow^* wA \Rightarrow^* xy \]
- Basic Step: Pick some production
 \[A \ ::= \gamma_1 \gamma_2 \ldots \gamma_n \]
 that will properly expand \(A \) to match the input
 - Want this to be deterministic

Predictive Parsing
- If we are located at some non-terminal \(A \), and there are two or more possible productions
 \[A \ ::= \alpha \]
 \[A \ ::= \beta \]
 we want to make the correct choice by looking at just the next input symbol
- If we can do this, we can build a predictive parser that can perform a top-down parse without backtracking
Example
- Programming language grammars are often suitable for predictive parsing
- Typical example
 \[
 \text{stmt ::= id = exp ; | return exp ; | if (exp) stmt | while (exp) stmt}
 \]
 If the first part of the unparsed input begins with the tokens
 \[
 \text{IF LPAREN ID(x) ...}
 \]
 we should expand \text{stmt} to an if-statement

LL(k) Property
- A grammar has the LL(1) property if, for all non-terminals \(A \), if productions \(A ::= \alpha \) and \(A ::= \beta \) both appear in the grammar, then it is the case that
 \[
 \text{FIRST(} \alpha \text{) } \cap \text{FIRST(} \beta \text{) } = \emptyset
 \]
- If a grammar has the LL(1) property, we can build a predictive parser for it

LL(k) Parsers
- An LL(k) parser
 - Scans the input \textit{left to right}
 - Constructs a \textit{leftmost} derivation
 - Looking ahead at most \(k \) symbols
- 1-symbol lookahead is enough for many practical programming language grammars

Table-Driven LL(k) Parsers
- As with LR(k), a table-driven parser can be constructed from the grammar
- Example
 1. \(S ::= (S) S \)
 2. \(S ::= [S] S \)
 3. \(S ::= \varepsilon \)
- Table
 \[
 \begin{array}{|c|c|c|c|}
 \hline
 \text{S} & 1 & 2 & 3 \\
 \hline
 \end{array}
 \]

LL vs LR (1)
- Table-driven parsers for both LL and LR can be automatically generated by tools
- LL(1) has to make a decision based on a single non-terminal and the next input symbol
- LR(1) can base the decision on the entire left context as well as the next input symbol

LL vs LR (2)
- LR(1) is more powerful than LL(1)
 - Includes a larger set of grammars
- \(^* \) (editorial opinion) If you’re going to use a tool-generated parser, might as well use LR
 - But there are some very good LL parser tools out there (ANTLR, JavaCC, …)
Recursive-Descent Parsers

- An advantage of top-down parsing is that it is easy to implement by hand
- Key idea: write a function (procedure, method) corresponding to each non-terminal in the grammar
 - Each of these functions is responsible for matching its non-terminal with the next part of the input

Example: Statements

Grammar
stmt ::= id = exp ;
 | return exp ;
 | if (exp) stmt
 | while (exp) stmt

Method for this grammar rule

```c
// parse stmt ::= id=exp; | …
void stmt( ) {
    switch(nextToken) {
        RETURN: returnStmt(); break;
        IF:  ifStmt(); break;
        WHILE: whileStmt(); break;
        ID: assignStmt(); break;
    }
}
```

Example (cont)

```c
// parse while (exp) stmt
void whileStmt() {
    // skip "while ("
    getNextToken();
    getNextToken();
    // parse condition
    exp();
    // skip ")
    getNextToken();
    // parse stmt
    stmt();
}
```

Invariant for Functions

- The parser functions need to agree on where they are in the input
- Useful invariant: When a parser function is called, the current token (next unprocessed piece of the input) is the token that begins the expanded non-terminal being parsed
 - Corollary: when a parser function is done, it must have completely consumed input correspond to that non-terminal

Possible Problems

- Two common problems for recursive-descent (and LL(1)) parsers
 - Left recursion (e.g., $E ::= E + T | ...$)
 - Common prefixes on the right hand side of productions

Left Recursion Problem

Grammar rule

```c
expr ::= expr + term | term
```

Code

```c
// parse expr ::= ...
void expr() {
    expr();
    if (current token is PLUS) {
        getNextToken();
        term();
    }
}
```

And the bug is???
Left Recursion Problem
- If we code up a left-recursive rule as-is, we get an infinite recursion
- Non-solution: replace with a right-recursive rule
 \[expr ::= term + expr | term \]
- Why isn't this the right thing to do?

Left Recursion Solution
- Rewrite using right recursion and a new non-terminal
- Original: \[expr ::= expr + term | term \]
- New
 \[expr ::= term exprtail \]
 \[exprtail ::= + term exprtail | \varepsilon \]
- Properties
 - No infinite recursion if coded up directly
 - Maintains left associativity (required)

Another Way to Look at This
- Observe that
 \[expr ::= expr + term | term \]
generates the sequence
 \[term + term + term + \cdots + term \]
- We can sugar the original rule to show this
 \[expr ::= term \{ + term \} \]
- This leads directly to parser code

Code for Expressions (1)
// parse
// expr ::= term \{ + term \}
void expr() {
 term();
 while (next symbol is PLUS) {
 getNextToken();
 term()
 }
}

Code for Expressions (2)
// parse
// factor ::= int | id | (expr)
void factor() {
 switch(nextToken) {
 case INT:
 process int constant;
 break;
 case LPAREN:
 process int constant;
 break;
 ...
 case ID:
 process identifier;
 break;
 case LBRACK:
 process bracket;
Left Factoring

- If two rules for a non-terminal have right hand sides that begin with the same symbol, we can't predict which one to use
- Solution: Factor the common prefix into a separate production

Left Factoring Example

- Original grammar
 \[ifStmt ::= if (expr) stmt \]
 \[\quad | \quad if (expr) stmt \quad else \quad stmt \]
- Factored grammar
 \[ifStmt ::= if (expr) stmt \quad ifTail \]
 \[ifTail ::= else \quad stmt \quad | \quad \epsilon \]

Parsing if Statements

- But it's easiest to just code up the "else matches closest if" rule directly

```
// parse
//     if (expr) stmt [ else stmt ]
void ifStmt() {
    getNextToken();
    getNextToken();
    expr();
    getNextToken();
    stmt();
    if (next symbol is ELSE) {
        getNextToken();
        stmt();
    }
}
```

Another Lookahead Problem

- In languages like FORTRAN, parentheses are used for array subscripts
- A FORTRAN grammar includes something like
 \[factor ::= id (commaSeparatedList) \quad | \quad id (arguments) \quad | \quad \ldots \]
- When the parser sees "id (", how can it decide whether this begins an array element reference or a function call?

Two Ways to Handle \texttt{id (?)}

- Use the type of \texttt{id} to decide
 - Requires declare-before-use restriction if we want to parse in 1 pass
- Use a covering grammar
 \[factor ::= id (commaSeparatedList) \quad | \quad \ldots \]
 and fix later when more information is available

Top-Down Parsing Concluded

- Works with a smaller set of grammars than bottom-up, but can be done for most sensible programming language constructs
- If you need to write a quick-n-dirty parser, recursive descent is often the method of choice
Parsing Concluded

- That’s it!
- On to the rest of the compiler
- Coming attractions
 - Intermediate representations (ASTs &c)
 - Semantic analysis (including type checking)
 - Symbol tables
 - & more...