LR State Machine
- Idea: Build a DFA that recognizes handles
 - Language generated by a CFG is generally not regular, but
 - Language of handles for a CFG is regular
 - So a DFA can be used to recognize handles
 - Parser reduces when DFA accepts

Prefixes, Handles, &c (review)
- If S is the start symbol of a grammar G
 - If $S \Rightarrow \alpha$ then α is a sentential form of G
 - γ is a viable prefix of G if there is some derivation $S \Rightarrow^{*_{m}} \alpha Aw \Rightarrow^{*} \alpha \beta w$ and γ is a prefix of $\alpha \beta$.
 - The occurrence of β in $\alpha \beta w$ is a handle of $\alpha \beta w$
- An item is a marked production (a . at some position in the right hand side)
 - $[A ::= . XY]$ $[A ::= X . Y]$ $[A ::= XY .]$

Building the LR(0) States
- Example grammar
 - $S' ::= S \$
 - $S ::= (L)$
 - $S ::= x$
 - $L ::= S$
 - $L ::= L , S$
 - We add a production S' with the original start symbol followed by end of file ($\$$)
 - Question: What language does this grammar generate?

Start of LR Parse
- Initially
 - Stack is empty
 - Input is the right hand side of S', i.e., $S \$
 - Initial configuration is $[S' ::= . S \]$
 - But, since position is just before S, we are also just before anything that can be derived from S
A state is just a set of items
- Start: an initial set of items
- Completion (or closure): additional productions whose left hand side appears to the right of the dot in some item already in the state

To shift past the x, add a new state with the appropriate item(s)
- In this case, a single item; the closure adds nothing
- This state will lead to a reduction since no further shift is possible

If we shift past the (, we are at the beginning of L
the closure adds all productions that start with L,
which requires adding all productions starting with S

Once we reduce S, we'll pop the rhs from the stack exposing the first state.
Add a goto transition on S for this.

Basic Operations
- Closure (S)
 - Adds all items implied by items already in S
- Goto (I, X)
 - I is a set of items
 - X is a grammar symbol (terminal or non-terminal)
 - Goto moves the dot past the symbol X in all appropriate items in set I

Closure (S) =
repeat
 for any item [A ::= α . Xβ] in S
 for all productions X ::= γ
 add [X ::= γ] to S
until S does not change
return S
Goto Algorithm

Goto (I, X)
- set new to the empty set
- for each item \([A ::= \alpha . X \beta]\) in I
 - add \([A ::= \alpha . X \beta]\) to new
- return Closure (new)

This may create a new state, or may return an existing one.

LR(0) Construction

- First, augment the grammar with an extra start production \(S' ::= S \$$
- Let \(T\) be the set of states
- Let \(E\) be the set of edges
- Initialize \(T\) to \(\text{Closure}(\{S' ::= S \$$\})\)
- Initialize \(E\) to empty

LR(0) Construction Algorithm

Repeat
- for each state \(I\) in \(T\)
 - for each item \([A ::= \alpha . X \beta]\) in \(I\)
 - Let new be Goto (I, X)
 - Add new to \(T\) if not present
 - Add new to \(E\) if not present
- until \(E\) and \(T\) do not change in this iteration

Footnote: For symbol \$$, we don’t compute \(\text{goto}(I, \$$); instead, we make this an accept action.

LR(0) Reduce Actions

Algorithm:
- Initialize \(R\) to empty
- for each state \(I\) in \(T\)
 - for each item \([A ::= \alpha . \]\) in \(I\)
 - add \((I, A ::= \alpha)\) to \(R\)

Building the Parse Tables (1)

- For each edge \(I \rightarrow J\)
 - if \(X\) is a terminal, put \(s_j\) in column \(X\), row \(I\) of the action table (shift to state \(J\))
 - If \(X\) is a non-terminal, put \(g_j\) in column \(X\), row \(I\) of the goto table

Building the Parse Tables (2)

- For each state \(I\) containing an item \([S' ::= S \$$]\), put accept in column \$$ of row \(I\)
- Finally, for any state containing \([A ::= \gamma . \]\) put action \(r_n\) in every column of row \(n\) in the table, where \(n\) is the production number
Example: States for

\[
S' ::= S$
\]
\[
S ::= (L)
\]
\[
S ::= x
\]
\[
L ::= S
\]
\[
L ::= L, S
\]

Example: Tables for

\[
S' ::= S$
\]
\[
S ::= (L)
\]
\[
S ::= x
\]
\[
L ::= S
\]
\[
L ::= L, S
\]

Where Do We Stand?

- We have built the LR(0) state machine and parser tables
 - No lookahead yet
 - Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same

A Grammar that is not LR(0)

- Build the state machine and parse tables for a simple expression grammar

\[
S ::= E$
\]
\[
E ::= T + E$
\]
\[
E ::= T$
\]
\[
T ::= x$
\]

LR(0) Parser for

<table>
<thead>
<tr>
<th>State</th>
<th>Symbol</th>
<th>Action</th>
</tr>
</thead>
</table>
| 0 | S | S ::= E$
| | E | E ::= T + E
| | T | T ::= x
| 1 | x | S ::= E$
| 2 | + | S ::= E$
| 3 | t | S ::= E$
| 4 | r | S ::= E$
| 5 | s | S ::= E$
| 6 | r | S ::= E$

SLR Parsers

- Idea: Use information about what can follow a non-terminal to decide if we should perform a reduction
 - Easiest form is SLR – Simple LR
 - So we need to be able to compute FOLLOW(\(A\)) – the set of symbols that can follow \(A\) in any possible derivation
 - But to do this, we need to compute FIRST(\(A\)) for strings \(\gamma\) that can follow \(A\)
Calculating FIRST(γ)
- Sounds easy... If γ = X Y Z, then FIRST(γ) is FIRST(X), right?
- But what if we have the rule X ::= ε?
- In that case, FIRST(γ) includes anything that can follow an X – i.e. FOLLOW(X)

FIRST, FOLLOW, and nullable
- nullable(X) is true if X can derive the empty string
- Given a string γ of terminals and non-terminals, FIRST(γ) is the set of terminals that can begin strings derived from γ.
- FOLLOW(X) is the set of terminals that can immediately follow X in some derivation
- All three of these are computed together

Computing FIRST, FOLLOW, and nullable (1)
- Initialization
 set FIRST and FOLLOW to be empty sets
 set nullable to false for all non-terminals
 set FIRST[a] to a for all terminal symbols a

Computing FIRST, FOLLOW, and nullable (2)
- repeat
 for each production X ::= Y1 Y2 … Yk
 if Y1 … Yk are all nullable (or if k = 0)
 set nullable[X] = true
 for each i from 1 to k and each j from i +1 to k
 if Yi ... Yj-1 are all nullable (or if i = 1)
 add FIRST[Yj] to FIRST[X]
 if Yi+1 ... Yk are all nullable (or if i+1 = j)
 add FOLLOW[X] to FOLLOW[Yi]
 if Yi+1 ... Yj-1 are all nullable (or if i+1 = j)
 add FIRST[Yj] to FOLLOW[Yi]
 Until FIRST, FOLLOW, and nullable do not change

Example
- Grammar
 Z ::= d
 Z ::= X Y Z
 Y ::= ε
 Y ::= c
 X ::= Y
 X ::= a

SLR Construction
- This is identical to LR(0) – states, etc., except for the calculation of reduce actions
- Algorithm:
 Initialize R to empty
 for each state I in T
 for each item [A ::= α.] in I
 for each terminal a in FOLLOW(A)
 add (I, a, A ::= α) to R
 i.e., reduce a to A in state I only on lookahead a
SLR Parser for

0. \(S ::= E \) $
1. \(E ::= T + E \)
2. \(E ::= T \)
3. \(T ::= x \)

On To LR(1)
- Many practical grammars are SLR
- LR(1) is more powerful yet
- Similar construction, but notion of an item is more complex, incorporating lookahead information

LR(1) Items
- An LR(1) item \([A ::= \alpha \cdot \beta, a]\) is
 - A grammar production \((A ::= \alpha\beta)\)
 - A right hand side position (the dot)
 - A lookahead symbol (a)
- Idea: This item indicates that \(\alpha\) is the top of the stack and the next input is derivable from \(\beta a\).
- Full construction: see the book

LR(1) Tradeoffs
- LR(1)
 - Pro: extremely precise; largest set of grammars
 - Con: potentially very large parse tables with many states

LALR(1)
- Variation of LR(1), but merge any two states that differ only in lookahead
- Example: these two would be merged
 \([A ::= x , a]\)
 \([A ::= x , b]\)

LALR(1) vs LR(1)
- LALR(1) tables can have many fewer states than LR(1)
- LALR(1) may have reduce conflicts where LR(1) would not (but in practice this doesn’t happen often)
Language Heirarchies

- LR(k)
- LALR(1)
- SLR
- LR(0)
- LL(k)
- LL(0)
- LL(1)

Coming Attractions

- LL(k) Parsing – Top-Down
- Recursive Descent Parsers
 - What to do if you need a parser in a hurry