Agenda for Today
- Parsing overview
- Context-free grammars
- Ambiguous grammars

Parsing
- The syntax of most programming languages can be specified by a context-free grammar (CFG)
- Parsing: Given a grammar G and a sentence w in $L(G)$, traverse the derivation (parse tree) for w in some standard order and do something useful at each node
 - The tree might not be produced explicitly, but the control flow of a parser corresponds to a traversal

“Standard Order”
- For practical reasons we want the parser to be deterministic (no backtracking), and we want to examine the source program from left to right.
 - (i.e., parse the program in linear time in the order it appears in the source file)

Common Orderings
- Top-down
 - Start with the root
 - Traverse the parse tree depth-first, left-to-right (leftmost derivation)
 - $LL(k)$
- Bottom-up
 - Start at leaves and build up to the root
 - Effectively a rightmost derivation in reverse
 - $LR(k)$ and subsets (LALR(k), SLR(k), etc.)
"Something Useful"

- At each point (node) in the traversal, perform some semantic action
 - Construct nodes of full parse tree (rare)
 - Construct abstract syntax tree (common)
 - Construct linear, lower-level representation (more common in later parts of a modern compiler)
 - Generate target code on the fly (1-pass compiler; not common in production compilers – can’t generate very good code in one pass – but great if you need a quick ’n dirty working compiler)

Context-Free Grammars

- Formally, a grammar G is a tuple $<N, \Sigma, P, S>$ where
 - N a finite set of non-terminal symbols
 - Σ a finite set of terminal symbols
 - P a finite set of productions
 - A subset of $N \times (N \cup \Sigma)^*$
 - S the start symbol, a distinguished element of N
 - If not specified otherwise, this is usually assumed to be the non-terminal on the left of the first production

Standard Notations

- a, b, c elements of Σ
- w, x, y, z elements of Σ^*
- A, B, C elements of N
- X, Y, Z elements of $N \cup \Sigma$
- α, β, γ elements of $(N \cup \Sigma)^*$
- $A \rightarrow \alpha$ or $A ::= \alpha$ if $<A, \alpha>$ in P

Derivation Relations (1)

- $\alpha A \gamma \Rightarrow \alpha \beta \gamma$ iff $A ::= \beta$ in P
 - derives
- $A \Rightarrow^* w$ if there is a chain of productions starting with A that generates w
 - transitive closure

Derivation Relations (2)

- $w A \gamma \Rightarrow^l \alpha \beta \gamma$ iff $A ::= \beta$ in P
 - derives leftmost
- $\alpha A w \Rightarrow^r \alpha \beta w$ iff $A ::= \beta$ in P
 - derives rightmost
- We will only be interested in leftmost and rightmost derivations – not random orderings

Languages

- For A in N, $L(A) = \{ w \mid A \Rightarrow^* w \}$
- If S is the start symbol of grammar G, define $L(G) = L(S)$
Reduced Grammars

- Grammar \(G \) is reduced iff for every production \(A \rightarrow \alpha \) in \(G \) there is a derivation
 \[S \Rightarrow^* x A z \Rightarrow^* x \alpha z \Rightarrow^* xyz \]
- i.e., no production is useless
- Convention: we will use only reduced grammars

Ambiguity

- Grammar \(G \) is unambiguous iff every \(w \) in \(L(G) \) has a unique leftmost (or rightmost) derivation
- Fact: unique leftmost or unique rightmost implies the other
- A grammar without this property is ambiguous
- Note that other grammars that generate the same language may be unambiguous
- We need unambiguous grammars for parsing

Example: Ambiguous Grammar for Arithmetic Expressions

\[
expr ::= expr + expr \mid expr - expr \\
 \mid expr \ast expr \mid expr / expr \mid int
\]
\[
int ::= 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9
\]
- Exercise: show that this is ambiguous
- How? Show two different leftmost or rightmost derivations for the same string
- Equivalently: show two different parse trees for the same string

Example (cont)

- Give a leftmost derivation of \(2+3\ast4 \) and show the parse tree

Example (cont)

- Give a different leftmost derivation of \(2+3\ast4 \) and show the parse tree

Another example

- Give two different derivations of \(5+6+7 \)
What’s going on here?

- The grammar has no notion of precedence or associatively
- Solution
 - Create a non-terminal for each level of precedence
 - Isolate the corresponding part of the grammar
 - Force the parser to recognize higher precedence subexpressions first

Classic Expression Grammar

```
expr ::= expr term | expr – term | term
term ::= term * factor | term / factor | factor
factor ::= int | ( expr )
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
```

Check: Derive 2 + 3 * 4

Check: Derive 5 + 6 + 7

- Note interaction between left- vs right-recursive rules and resulting associativity

Check: Derive 5 + (6 + 7)

Another Classic Example

- Grammar for conditional statements
  ```
  ifStmt ::= if ( cond ) stmt 
  | if ( cond ) stmt else stmt
  ```
- Exercise: show that this is ambiguous
- How?
One Derivation

\[
\text{ifStmt ::= if (cond) stmt} \\
| \text{if (cond) stmt} \\
| \text{else stmt}
\]

Another Derivation

\[
\text{ifStmt ::= if (cond) stmt} \\
| \text{if (cond) stmt} \\
| \text{else stmt}
\]

Solving if Ambiguity

- Fix the grammar to separate if statements with else clause and if statements with no else
 - Done in Java reference grammar
 - Adds lots of non-terminals
 - Use some ad-hoc rule in parser
 - "else matches closest unpaired if"

Parser Tools and Operators

- Most parser tools can cope with ambiguous grammars
 - Makes life simpler if used with discipline
 - Typically one can specify operator precedence & associativity
 - Allows simpler, ambiguous grammar with fewer nonterminals as basis for generated parser, without creating problems

Parser Tools and Ambiguous Grammars

- Possible rules for resolving other problems
 - Earlier productions in the grammar preferred to later ones
 - Longest match used if there is a choice
 - But be sure that what the tool does is really what you want

Coming Attractions

- Next topic: LR parsing
 - Continue reading ch. 3