Verified Security

Where are we and where should we go?
Paul Vines



Outline

Overview of Existing Security Verification Projects

Discussion
The State of Side-channels
Conclusion

BN~



Current Works

Cryptographic Primitives
Protocols (TLS)

Secure Apps



Current Works: Crypto Primitives

Tools: FCF, EasyCrypt...

RSA-OAEP (EasyCrypt) -- Crypto— Assembly
HMAC (FCF) -- Crypto— Assembly

SHA256 (FCF) -- Crypto* — Assembly

HMAC, SHA, RSA (Dafny) -- Functional — Assembly



Current Works: Protocols

SSH (CryptoVerif) -- Crypto — OCaml

miTLS (F7) -- Crypto — .NET



Current Works: Full App Security

Quark (Coq)

Ironclad (Dafny)



Discussion
Where should we go?



Security Verification in 2-Phases

Cryptographic Properties

‘ FCF / EasyCrypt / etc.

Functional Specification

g Verifiable C / Frama-C / etc.

Implementation




Crypto Primitives: Not Worth a Retrofit

e Difficult to capture cryptographic properties
e Low frequency of errors
e [fitis done, the Ironclad approach of going from FIPS spec to implementation
makes more sense
e However, we should push cryptographers to use verification-friendly tools
(such as FCF/EasyCrypt) when creating new algorithms
o Cheapens pushing verification out to these primitives in the future
o Grants greater assurance to algorithmic correctness (Dual EC DRBG)



TLS: When Will The Madness End?

- Many vulnerabilities in the past (and present...)

- 2013 miTLS

- 2014 Finding flaws in miTLS

- 2015 Finding flaws in implementations except miTLS and PolarSSL
- S0, we solved it?!



TLS is/would be a Big Win

TLS is the security behind all network applications most users experience

History of attacks suggests full concept—implementation verification
o Vulnerabilities in both implementation and specification that had led to attacks

Recent history also suggests we can’t know if we've succeeded

Is miTLS good enough?

Does PolarSSL show verification is not getting us that much?
When will we get a crypto — assembly verified protocol?



Authentication

Authentication mechanisms are also a source of significant vulnerabilities.

Certificate handling is a juicy target, but also complicated by the ridiculousness of
the X509 spec



The State of Side-channels



Side-channels, Now

e Timing Side-channels

o Lucky 13

o Secure Coding Methodologies
e Emissions Side-channels

o PITA attack

o Physical space dependent



Verifying Absence of Side-channels

e More important to verify than correctness for crypto primitives?
e Timing Side-channels
o Current works extending CompCert to verify constant-time formulation of
programs
o MAC-then-Encode-then-Encrypt with Cipher-Block-Chaining (MEE-CBC)
o Making this easier would be nice
e Emissions Side-channels -- No Solutions So Far



Conclusions



What should be done

Develop a featureful cryptographic framework based on Coq (FCF)
- Get Cryptographers to use it

Verify high-level protocols (TLS) from cryptographic properties to small-TCB
implementations (assembly)

Incorporate more esoteric security needs (constant time execution) into
implementation verification






Retrofitting vs. Rebuilding

Retrofit by creating verified versions of existing protocols
Or

Rebuild by creating and verifying new protocols and include fallback options for
compatibility

Retrofitting is the way forward

- Allows a verified version of security software to be adopted gradually and at
low-cost to the user.

Retrofitting also avoids the risk of eliminating spec-level bug-features



