
Verified Security
Where are we and where should we go?

Paul Vines



Outline
1. Overview of Existing Security Verification Projects
2. Discussion
3. The State of Side-channels
4. Conclusion



Current Works
Cryptographic Primitives

Protocols (TLS)

Secure Apps



Current Works: Crypto Primitives
Tools: FCF, EasyCrypt…

RSA-OAEP (EasyCrypt) -- Crypto→ Assembly

HMAC (FCF) -- Crypto→ Assembly

SHA256 (FCF) -- Crypto* → Assembly

HMAC, SHA, RSA (Dafny) -- Functional → Assembly



Current Works: Protocols
SSH (CryptoVerif) -- Crypto → OCaml 

miTLS (F7) -- Crypto → .NET



Current Works: Full App Security
Quark (Coq)

Ironclad (Dafny) 



Discussion
Where should we go?



Security Verification in 2-Phases

Cryptographic Properties

Functional Specification

Implementation

1

2

FCF / EasyCrypt / etc.

Verifiable C / Frama-C / etc.



Crypto Primitives: Not Worth a Retrofit
● Difficult to capture cryptographic properties
● Low frequency of errors
● If it is done, the Ironclad approach of going from FIPS spec to implementation 

makes more sense
● However, we should push cryptographers to use verification-friendly tools 

(such as FCF/EasyCrypt) when creating new algorithms
○ Cheapens pushing verification out to these primitives in the future
○ Grants greater assurance to algorithmic correctness (Dual EC DRBG)



TLS: When Will The Madness End?
- Many vulnerabilities in the past (and present…)
- 2013 miTLS
- 2014 Finding flaws in miTLS
- 2015 Finding flaws in implementations except miTLS and PolarSSL
- So, we solved it?!



TLS is/would be a Big Win
● TLS is the security behind all network applications most users experience
● History of attacks suggests full concept→implementation verification

○ Vulnerabilities in both implementation and specification that had led to attacks

● Recent history also suggests we can’t know if we’ve succeeded
● Is miTLS good enough?
● Does PolarSSL show verification is not getting us that much?
● When will we get a crypto → assembly verified protocol?



Authentication
Authentication mechanisms are also a source of significant vulnerabilities. 

Certificate handling is a juicy target, but also complicated by the ridiculousness of 
the X509 spec



The State of Side-channels



Side-channels, Now
● Timing Side-channels

○ Lucky 13
○ Secure Coding Methodologies

● Emissions Side-channels
○ PITA attack
○ Physical space dependent



Verifying Absence of Side-channels
● More important to verify than correctness for crypto primitives?
● Timing Side-channels

○ Current works extending CompCert to verify constant-time formulation of 
programs

○ MAC-then-Encode-then-Encrypt with Cipher-Block-Chaining (MEE-CBC)
○ Making this easier would be nice

● Emissions Side-channels -- No Solutions So Far



Conclusions



What should be done
- Develop a featureful cryptographic framework based on Coq (FCF)

- Get Cryptographers to use it
- Verify high-level protocols (TLS) from cryptographic properties to small-TCB 

implementations (assembly)
- Incorporate more esoteric security needs (constant time execution) into 

implementation verification 



?



Retrofitting vs. Rebuilding
Retrofit by creating verified versions of existing protocols

Or

Rebuild by creating and verifying new protocols and include fallback options for 
compatibility

Retrofitting is the way forward

- Allows a verified version of security software to be adopted gradually and at 
low-cost to the user.

Retrofitting also avoids the risk of eliminating spec-level bug-features


