
Automated Verification of
RISC-V Kernel Code

Antoine Kaufmann

Big Picture

● Micro/exokernels can be viewed as event-driven
○ Initialize, enter application, get interrupt/syscall, repeat

● Interrupt/syscall handlers are bounded

● Most of the code fiddles with low-level details in some way
○ -> messy, high level language does not help

Idea:
● Use SMT solver on instructions and spec

○ (And see how far we get)

Overview

1. RISC-V Z3 model

2. Kernel + Proof

RISC-V

● Free modular ISA from Berkeley
● Clean slate, compact, and no legacy features

○ 100 pages of spec for user instructions (including extensions)
○ 60 pages for kernel features

● 62 Core RV64-I instructions

○ Basic register operations, branches, linear arithmetic, bit ops

● Supports full blown virtual memory, or base+bounds

RISC-V SMT Model Status

● Only 8 RV64-I instructions still missing:
○ fence(i), rdcycle(h), rdtime(h), rdinstrret(h)

● Supported kernel features:
○ Transfers between protection levels: syscall/traps
○ Base and bounds virtual memory

● Missing kernel features:
○ Modelling interrupt causes
○ More than 2 privilege levels
○ Full page table based virtual memory

● Runs (and passes) provided riscv-tests for instructions
○ -> Demo

Model: The first attempt

● Pure Z3 expressions for fetch and exec of instructions
○ fetch_and_exec :: machine state -> machine state

● Having pure Z3 expressions everywhere is convenient

● Use simplify after every step to keep compact

● But: Non-trivial Conditional branches cause blow-up

○ Simplify won’t be able to cut down much in next step

○ Expressions built bottom up, lot’s of unneeded work

Model: “split” state

● At conditional, check which branches are reachable
○ Only build up reachable branches

● Keep branches separate (while storing path condition)
○ Further process each expression separately

● Expressions stay smaller and are easily simplified
● The Kernel code is not very “branchy” so number is small

● But: Python implementation gets messy
○ Basically monads -> manually building continuations

Kernel: Spec

● Given a valid system config kernel will initialize internal
state correctly and enter the first application
○ System config: Applications to load (entry, base, bound)

● If we get a yield system call: switch to other application
○ Kernel state still contains this application’s state
○ New application’s state is restored correctly

● A sbrk() system call will increase the bound if possible
while maintaining isolation

● If application faults/calls invalid syscall it is terminated

● Run initialization code with abstract config until it reaches
userspace
○ Ends up with separate expressions depending on number of

applications (1-8 currently)

● Require: Valid Config
○ Non-overlapping applications, entry PC in bounds and aligned

● Ensure: First app running and internal state correct
○ Read-only parts not modified
○ Base-bounds VM enabled
○ PC, mbase, mbound set to first app’s values
○ Current process points to first process handle
○ Valid apps in config marked as valid in internal state

Kernel: Initialization

Kernel: Induction (Proof: WIP)

● Run event handlers (system calls, faults), and show
invariants preserved and event handled correctly

● Start in symbolic state
○ Load only read-only sections of kernel ELF

● Require: Valid kernel state
○ Current app valid and it’s base and bound set
○ Application’s base and bounds are non-overlapping

● Ensure: Event handled correctly and valid kernel state
○ Read-only parts of kernel not modified
○ Handle event correctly (yield, fault, sbrk)
○ Current app valid and it’s base and bound set
○ Application’s base and bounds are non-overlapping

Future Work

● Finish kernel proof for base-and-bounds VM

● Add additional system calls (e.g. starting new process)

● Model page table based VM

● Speed up verification

○ Most of the time is passed in z3.simplify()

○ Could parallelize when splitting state

