ProverBot9000

A proof assistant assistant

Proofs are hard

Coglde

File Edit View Navigation Try Tactics Templates Queries Tools Compile Windows Help
M = ; A e
HX 3 3 FE "5 0
o] L [“ F =
()*scratch* [crasho.v
- context [store (store ?A) ?A] => rewrite anrei_:J LHARBEORL (1/1)
= gtoreoin—_s_ = ggofe ;M _ _l=> f_equal forall (a : addr) (x : val) (rx : unit -> prog)
S e T lEe S el e Re G . | (post : mpred) (m : memory) (out : outcome),
_: context [load (store ?A) ?A] |- => rewrite loac load m a = Some x /\
[H: Some ?X = Some ?Y |-] => assert (X = Y); try congr (forall (c : unit) (post0 : mpred)
[Hl: ?P = Some ?X, H2: ?P = Some ?Y |-] => replace X w (m0 : memory) (out0 : outcome),
5 = i load m0 a = Some x /\ post0 = post ->
ESF exec m0 (rx c) outld ->
h = exists m' : memory,
ot B 7ex§c E— out0 = Terminated m' /\ post0 m') ->
repeg? m:tc goal wit ST 5 exec m (x0 <- Read a; _ <- Write a x0; rx tt) out ->
I3 = =EECD N = [e . exists m' : memory, out = Terminated m' /\ post m'
[H: exec _ (progseg _ _) _ |- _ 1 => inv H
end.
Ltac crush_term :=
match goal with
| H: context [= Terminated], : exec ?M (_ ?C) 20 |- ¢

end.
(** Examples *)
Definition read write (a: addr) rx :=
x <- Read a ;
Write a x ;;
rx tt.

Example read write ok:

forall (a: addr) (x: val), {<
PRE
a |-> x
POST
a |->x
>} read_write a.
Proof.

unfold read write.
repeat autounfold.
crush exec.
crush term.

w‘[

Messages j Errors dldobs d‘

Error: No matching clauses for match.

|Autosaved

Line: 168 Char: 14- Coq is ready

0/0

Proof assistants are hard

CANT YOU PO
ANYTHING RIGHTZ

Big Idea: Proofs are hard, make computers do them

Proofs are just language with lots of structure

© ® Coglde

File Edit View Navigation Try Tactics Templates Queries Tools Compile Windows Help

X3+ a0 F L 0O« O

O*scratch* [dcrasho.v

CONTEXCT [1040 (BtOre _—¢A) TA] —- IEewrlIte foaa Btory — 1 subgoal

context [store (store _ ?A _) ?A _] => rewrite store_ a : addr

- store ?M _ _ = store ?M _ _ => f equal 2 : o I
- Some ?X = Some ?Y => f equal g .

B : . : >
: ?A) ?A] |- => rewrite loac Ik unl prog I ()(:a

context [load (store post : mpred

[H: Some ?X = Some ?Y |-] => assert (X = Y); try cong: out : outcome
[Ei=o;§gz Some ?X, H2: ?P = Some ?Y |- _] => replace X w m' : memory
= v : val
end. H7 : load m' a = Some v O ntext
CERCICEERICRaaE H: load m' a = Some x /\
repeat match géal LR (forall (c : unit) (post0 : mpred)
T sten [- | = inv B (m : memory) (out : outcome),
[H: exec _ (progseq _) I {=> inv H load m a = Some x /\ post0 = post ->
o - - - - — exec m (rx ¢) out ->
end. exists m' : memory,
= out = Terminated m' /\ post0 m')
oS B GER Hl : exec (store m' a v) (rx tt) out
match goal with (1/1)

Lng: context [_ = Terminated _ _: exec ?M (_ ?C) 70 |- ¢ exists m'0 : memory,

1,
out = Terminated m'0 /\ post m'0
s oba . oa

Errors ij | Jobs i] |

Definition read write (a: addr) rx := ‘
X <- Read a ;

B Context || =2

Example read write ok:
forall (a: addr) (x: val), (<

PRE
a |-> x
POST
a |-> x
>} read write a.
Proof.

unfold read write.
repeat autounfold. intros.

oo > Want to generate this!

| | i

|Fleady, proving read_write_ok Line: 168 Char: 14 Coq is ready 0/0

NLP techniques are good at modelling language

ﬂﬂﬂﬂﬂ

o BASED aﬁ%ﬂlc = = o™
2 UNDERSTANDING ANSHERS
HUN}RIS\IK N R lﬁlﬂ!TEER§ S RESEARCHEOLD L.
STANDARD. 'Z2EVALUATION st e,
””””” HOWEVER 2 iNATIJ RAL= E“w;%ﬂ% ALGORITHMS

|NPUT‘I’ ASK cﬁiimsullﬁlg:ﬁ"ilﬁm"'""z': = DiFERN b

— g S L= i
DA-,!&._ NUMBER LARGERC>/-: L it BE%B'}{E{'"E" :

= =" ANGUAGE

We use RNNs to model the “language” of proofs

b G ® (hy)

&

:

Ry
6

g
Ll

We use GRUs for internal state updates

it = 0 (Wz ' [ht—laxt])
re =0 (Wr ' [ht—lamt])
?Lt — tanh (W . [’f‘t X ht—la ZEt])

ht:(l—zt)*ht_l—i—zt*ﬁt

i |

Probably good idea: Tokenize proofs “smartly”

Works well with english:

“The quick brown robot reaches for Doug’s neck...”

->

<tk9> <tk20> <tk36> <UNK> <tk849> <tk3>

Custom proof names and tactics make this hard:

AppendEntriesRequestLeaderlLogs
OnelLeaderLogPerTerm

LeaderLogsSorted
RefinedLogMatchingLemmas
AppendEntriesRequestsCameFromlLeaders
AllEntriesLog

LeaderSublog

Easy, bad idea: Model proofs char by char

Pros:
Very general, can model arbitrary strings
No “smart” pre-processing needed

Cons:
Need to learn to spell
Need bigger models to handle generality
Need more training data to avoid overfitting

Longer-term dependencies are harder, terms are separated by more “stuff”

Probably good idea: multi-stream models

Global Context

Proof Context —— Some state | =l Tactic

Goal

Problem: during training, have to bound number of unrolled time steps. The contexts can get much larger
than the space that we have to unroll time steps

Our problem formulation, one unified stream

%%%%% Start tokens
name peep_aiken_6 p. Previous tactics
unfold aiken_6_defs in p.

simpl in p.

specialize (p ¢).

do 3 set_code cons c.

set_code _nil c.

set_instr_eq i 0%nat aiken_6_example.
set_instr_eq i0 1%nat aiken_6_example.
set_instr_eq i1 2%nat aiken_6_example.
set_int_eq n eight.

S+ Dividing tokens
option StepEquiv.rewrite Current goal
*kkkk Dividing tokens

set_ireg_eq rd rdO. Next tactic

Our full model

RNN: 1024 -) RNN: 1024 -> RNN: 1024 -> RNN: 1024 -> RNN: 1024 -> RNN: 1024
B 2N 'j_'_'_'_'_'_'_'if_'_'_'_'_'_'_'f 'j_'_'_'_'_'_'_'if_'_'_'_'_'_'_'f 'j_'_'_'_'_'_'_'if_'_'_'_'_'_'_'f ':_'_'_'_'_'_'_'ir'_'_'_'_'_'_'_'f ','_'_'_'_'_'_'_'if_'_'_'_'_'_'_'
RNN: 1024 -) RNN: 1024 -> RNN: 1024 -> RNN: 1024 -> RNN: 1024 -> RNN: 1024
DU 2 ':_'_'_'_'_'_'_'_'*_'_'_'_'_'_'_'_',' ':_'_'_'_'_'_'_'if_'_'_'_'_'_'_'f ':_'_'_'_'_'_'_'if_'_'_'_'_'_'_'f ':_'_'_'_'_'_'_'if_'_'_'_'_'_'_'f ',’_'_'_'_'_'_'_':'E_'_'_'_'_'_'_'
RNN: 1024 -} RNN: 1024 -> RNN: 1024 -y RNN: 1024 -> RNN: 1024 -y RNN: 1024

\4 \ 4 \ 4 \ 4 \ 4
256, o(X) 256, o(X) 256, o(X) 256, o(X)
| N { e r

Data Extraction

e Proverbot9000 predicts tactics based on the just
current goal (for now)

e Proverbot900 is trained on the Peek/Compcert
codebase.

e 657 lines of python code to drive Coqgtop and extract
proof state

e Subgoal focusing and semicolons make proof structure

more variable and complex

We have systems which remove subgoal focusing, and

[P_:t:::; K rrreralloninagti: ESony EG from the proofs

induction n ; [try reflexiwity | idtac ; try introl.
- assert (1 = 1) ; auto.

- omega.
Qed.
Lemma k : foi
Proof
induction n

Evaluation

Our current model gets 21% accuracy on a held out set of 175 goal-tactic
combinations in Peek, (aiken 5 and 6)

Interface

Lemma k : forall n: nat, (5 n) > n.

e Partially complete a proof |

induction n ; [try reflexivity | idtac ; try introl.

assert (1 =1) ; auto.

e Run proverbot

is/proverbot9e00 $. /predict.py simple-proof.v

Lemma k FRIL m mate s By = o,
Proof.

) Get a new taCtiC' induction n ; [try reflexivity | idtac ; try introl.

:rt (1 = 1) ; auto.

No subgoals left!

.,.mf? ..Jﬁn

Yo, T
Wy ..1.
L |
-

\
L

;

a7y |
// _..u.,.“.__.._. ., r;.‘.“.,.. =Y

._.“u... .. E . - ;,ﬂ
i Y
_;

:

V.
N

\
1

/

=

