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Online Learning with Expert Advice
Lecturer: Ofer Dekel Scribe: Jonathan Bragg

1 Review

Recall the problem of online learning with expert advice. We have defined our regret in terms of the difference
between our loss and the loss of the best fixed expert (if one were to pick the expert in the future). Recall
that the expert advice setting proceeds as follows.

For t = 1, . . . , T (T known in advance):

• d experts (actions) give advice

• Player chooses expert It ∈ {1, . . . , d}

• Player receives feedback lt ∈ [0, 1]d and incurs loss lt,It ∈ [0, 1]

Remark: Can It be deterministic?
The answer is no for the following reason. An adversary (even an oblivious one) knows our code, so he

would choose

lt,i =

{
1 if i = It

0 otherwise
,

resulting in a cumulative loss for the player equal to T . In order to calculate regret, consider how this loss
compares to the best fixed strategy. The average loss on each round is 1/d, so the average cumulative loss of

any fixed expert i over T rounds is T/d. Therefore, ∃i s.t.
∑T
t=1 lt,i ≤ T/d, since all experts can’t be worse

than average. Thus,

Regret ≥ T − T/d =
d− 1

d
T,

yielding linear regret O(T ).

Remark: Does it matter if the adversary can play after the player (i.e., he is non-oblivious)?
The answer is no for the same reason. Since the adversary knows our code, which is deterministic, he

gains nothing by viewing the outcomes.

2 Achieving Sub-linear Regret with Randomization

Part I: Introduce Randomization

• Instead of choosing a single expert, we choose pt ∈ ∆d, the probability simplex over d outcomes.

• In each round t, we draw expert It randomly and independently as It ∼ pt. More explicitly, ∀i ∈
{1, . . . d}, P (It = i) = pt,i.

Importantly, we choose pt deterministically (the adversary can know our choices), but the adversary does
not know the value of the actual sample.
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Part II: Measure Expected Regret

Since we are sampling experts, it makes sense to consider our expected loss and regret. We define

Expected Regret = E

[
T∑
t=1

lt,It

]
− min
i∈{1,...d}

T∑
t=1

lt,i

=

T∑
t=1

pt · lt − min
p∈∆d

T∑
t=1

p · lt.

The expected loss of our randomized algorithm can be written as
∑T
t=1 pt · lt by linearity of expectation. To

see why we can rewrite loss of the best fixed expert as minp∈∆d

∑T
t=1 p · lt, we need the following lemma.

Lemma 1. The loss of the best fixed expert over T rounds is equal to the expected loss of the best fixed
randomized strategy, or

min
i∈{1,...,d}

T∑
t=1

lt,i = min
p∈∆d

T∑
t=1

p · lt.

Proof. In order to prove equality, we will prove inequality in both directions.

≥: Trivial, since we can choose p s.t. pi = 1 for the best fixed expert i, which will result in an expected
loss equal to the best fixed strategy.

≤: Choose p. If ∃i s.t. pi = 1, then we are done since the two quantities are equal. Otherwise, there ∃i, j
s.t. pi > 0 and pj > 0. We can assume WLOG that

∑T
t=1 lt,i ≤

∑T
t=1 lt,j . Now, set p′i ← pi+pj and p′j ← 0.

Thus,
∑T
t=1 p

′ · lt ≤
∑T
t=1 p · lt.

We can repeat this process until ∃i s.t. pi = 1, and we are done since this condition corresponds to a
fixed strategy.

Conclusion: The expert advice problem is special case of online convex optimization with linear functions
parameterized by p ∈ ∆d. Thus, Follow the Regularized Leader (FTRL) algorithms should yield better
regret bounds, as we will see.

3 Follow the Regularized Leader for the Expert Advice Problem

3.1 Review of First Attempt

First, we will restate a theorem, we have already proved.

Theorem 2. Suppose that f1, . . . , fT are convex functions with regularizer R(w), and we use online gradient
descent to choose w1, . . . , wT with gt ∈ ∂ft(wt) according to the online gradient descent algorithm. For any
norm ‖·‖, let σ,G be constants s.t.

1. R is σ-strongly convex w.r.t. ‖·‖ and

2. ∀t, ‖gt‖∗ ≤ G.

Then, ∀u,

Regret(u) ≤ R(u) +
TG2

σ
.

Plugging in R(p) = 1
2η ‖p‖

2
2 + I∆d

(p) and setting η = 1√
2dT

, we have already shown that Regret(u) ≤
√

2dT = O(
√
T ). Last time, we observed that we may be able to provide a better regret bound by using a

norm that will result in a tighter bound for our dual norm.
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3.2 FTRL with Negative Entropy Function

It turns out that a better choice for regularization is

R(p) =
1

η

d∑
i=1

pi log pi + log d+ I∆d
(p),

which uses the negative entropy function and guarantees that our solution is in the probability simplex.
How, though, should we choose our norm? We must make sure that it is still strongly convex, or our regret
bound will be vacuous. Recall that last time, we showed 1

2 ‖w‖
2
2 is 1-strongly convex w.r.t. ‖·‖2. We will

use the following fact to improve our regret bound.

Lemma 3. R(p) =
∑d
i=1 pi log pi is 1-strongly convex w.r.t. ‖·‖1 in ∆d.

Proof. It is sufficient to establish that R(p) satisfies the following inequality, which follows from the definition

of strong convexity: R(q) ≥ R(P ) + OR(P ) · (q − p) + 1
2 ‖q − p‖

2
1. Substituting, we have

d∑
i=1

qi log qi
?
≥

d∑
i=1

pi log pi +

d∑
i=1

(1 + log pi) · (qi − pi) +
1

2
‖p− q‖21

≥
d∑
i=1

qi log pi +
1

2
‖p− q‖21 ,

since
∑d
i=1 qi = 1 and

∑d
i=1 pi = 1 (they are on the simplex). Rewriting,

d∑
i=1

qi log
qi
pi

?
≥ 1

2
‖p− q‖21 .

We know that this inequality holds by Pinsker’s inequality, a result from information theory that bounds
the difference in terms of the Kullback-Leibler divergence, so we are done.

We can use this result to apply the online convex optimization theorem with the ‖·‖1. Since
∑d
i=1 pi log pi

is 1-strongly convex w.r.t. ‖·‖1 in ∆d, R(p) = 1
η

∑d
i=1 pi log pi + log d + I∆d

(p) is 1
η -strongly convex w.r.t

‖·‖1. Also, by the following theorem, we know ‖·‖1 is dual to ‖·‖∞:

Theorem 4.

‖·‖p is dual to ‖·‖q ⇐⇒
1

p
+

1

q
= 1.

The gradient is simply the vector of losses gt = lt, due to ft = pt · lt. Since we are interested in the ‖·‖1,
in order to apply our theorem we consider the dual norm of the gradient ‖gt‖∞ ≤ 1, ∀t. (This inequality
holds since we assume that losses are bounded by 1).

Applying our theorem, we have that

Regret(p) ≤ R(p) + ηT

=
1

η

d∑
i=1

pi log pi + log d+ I∆d
+ ηT.

Using the fact that p ∈ ∆d, we can bound
∑d
i=1 pi log pi ≤ log d. Thus, we have

Regret(p) ≤ 1

η
log d+ log d+ I∆d

+ ηT.

Setting η =
√

log d
2T , our final regret bound is

Regret(p) ≤ 2
√
T log d.

This result improves over our previous bound by reducing the factor of d under the square root to log d.
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4 Looking Ahead

Next time, we will present a closed form solution, so that we don’t have to run gradient descent minimization
at each step of the FTRL algorithm.
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