
CSE599s, Spring 2014, Online Learning Lecture 3 - 04/08/2014

Follow-The-Regularized-Leader
Lecturer: Brendan McMahan Scribe: Alexandre Bykov

1 Review of Follow-The-Leader

Last time we analyzed the Follow-The-Leader (FTL) algorithm. As a reminder, below is the rule the player
uses at round t+ 1 for picking wt+1:

wt+1 = argmin
w∈W

f1:t(w).

We proved that FTL has the following regret bound:

Lemma 1 (FTL Regret Bound). Let w1, ..., wT be the points played by the player during FTL. Then, ∀u ∈W

Regret ≤
T∑

t=1

ft(wt)− ft(wt+1).

There are two key problems with FTL. First, solving for the w that minimizes f1:t(w) could be a hard
optimization problem. The bigger issue is that, in general, the regret bound is O(T ). This is especially true
for linear functions. The poor regret bound comes from the fact that ft(wt)− ft(wt+1) will be large if wt+1

is far from wt. This issue can be mitigated by adding regularization to improve the stability of the solution.

2 Follow-The-Regularized-Leader

The Follow-The-Regularized-Leader (FTRL) algorithm is the FTL algorithm with a regularizer term added.
Let R : W→R. At round t+ 1 the player will pick wt+1 according to

wt+1 = argmin
w∈W

(f1:t(w) +R(w)). (1)

Without loss of generality we can say that R(0) = 0, which minimizes the regularization function. Any
regularization function can be translated so that it is minimized at 0. From this fact it follows that

w1 = argmin
w∈W

R(w) = 0. (2)

Claim 2. By inserting the regularization term we can make the solution more stable.

This claim will be proven later but first we will consider a simple example.

2.1 Example: Linear Loss FTRL

Consider a linear loss function of the form

ft(w) = gt · w

with gt ∈ Rn. Let the regularization term be of the form

R(w) =
1

2η
‖w‖22

1



where η ≥ 0. For this example we can let W = Rn since the regularization term will ensure a nice solution.
Substituting the above definitions into (1) we get

wt+1 = argmin
w∈Rn

(g1:t · w +
1

2η
‖w‖22).

To minimize the inside expression we can take the gradient with respect to w and set it to 0:

Ow(g1:t · w +
1

2η
‖w‖22) = g1:t +

1

η
w = 0⇒ w = −ηg1:t.

Therefore we have that at step t+ 1 the player must pick

wt+1 = −ηg1:t.

Instead of recalculating this quantity at each time step, we can reformulate this in terms of wt. From the
equation above we know that

wt = −ηg1:t−1 ⇒ g1:t−1 =
−wt

η
.

We can therefore rewrite wt+1 as

wt+1 = −ηg1:t = −η(
−wt

η
+ gt) = wt − ηgt.

This is exactly the same as the formula for gradient descent with a constant learning rate. To check for the
stability of these solution vectors we can compute

ft(wt)− ft(wt+1) = gt · (wt − wt+1) = gt · (−ηg1:t−1 + ηg1:t) = gt · (ηgt) = η‖gt‖22. (3)

By correctly picking a value for η we can ensure that this value is low.

Observation 3. For certain loss functions, FTL will also acheive the above regret bound. For example, loss
functions of the form

ft(w) =
1

2
‖w − zt‖22

where zt is picked by the adversary, will also create a stable solution. Our quadratic regularizer produces the
same effect as a quadratic loss function.

2.2 FTRL Regret Bound

Lemma 4 (FTRL Regret Bound). Let w1, ..., wT be the points played by the player during FTRL. Then,
∀u ∈W

Regret(u) ≤ R(u) +

T∑
t=1

ft(wt)− ft(wt+1).

Proof. Play FTL with the following sequence of loss functions: f0 = R, f1, f2, ..., fT . By the way we defined
wt in (1), we can guarantee that FTL will play the exact same sequence w1, w2, ..., wT as FTRL in this
situation. From Lemma 1 we know that

T∑
t=0

ft(wt)− ft(u) ≤
T∑

t=0

ft(wt)− ft(wt+1).

Substituing f0 = R we get:

R(w0)−R(u) +

T∑
t=1

ft(wt)− ft(u) ≤ R(w0)−R(w1) +

T∑
t=1

ft(wt)− ft(wt+1).

2



By (2) we know that R(w1) = 0. Substituting that in and simplifying we get:

T∑
t=1

ft(wt)− ft(u) ≤ R(u) +

T∑
t=1

ft(wt)− ft(wt+1)⇒

Regret(u) ≤ R(u) +

T∑
t=1

ft(wt)− ft(wt+1).

2.3 Linear Loss Function Analysis

Linear loss functions caused some of the worst behavior for FTL. Here we analyze the performance of FTRL
on linear loss functions.

Corollary 5. Consider FTRL with regularizer

R(w) =
1

2η
‖w‖22.

Then ∀u ∈ Rn:

Regret(u) ≤ 1

2η
‖u‖22 +

T∑
t=1

η‖gt‖22.

Proof. As shown in Lemma 4, we know that

Regret(u) ≤ R(u) +

T∑
t=1

ft(wt)− ft(wt+1).

By (3) we know that
ft(wt)− ft(wt+1) = η‖gt‖22

for the specified R. Substituting that and the equation for R into the regret bound completes the proof.

An important question is whether this regret is sublinear. Clearly this depends on the learning rate
that we choose. If the learning rate is too high then the adversary can pick points such that we constantly
oscillate around the optimal solution. If the learning rate is too small the adversary can pick an optimal
value far away from the initial value and we will never get there. To avoid these issues we will need to pick
an optimal step size.

Assumption 6. ∀t, ‖gt‖2 ≤ G and W = {u|‖u‖2 ≤ B}

By the above assumptions and Corollary 5 we get:

Regret(u) ≤ 1

2η
‖u‖22 +

T∑
t=1

η‖gt‖22 ≤
B2

2η
+ ηTG2.

We can solve for the η that minimizes this regret bound. Taking the derivate of the above expression in
terms of η and setting it equal to 0 we get:

d

dη
(
B2

2η
+ ηTG2) = − B

2

2η2
+ TG2 = 0⇒ B2

2η2
= TG2 ⇒ η =

B

G
√

2T
.

3



Substituting this value for η back into the regret bound we get:

Regret(u) ≤ GB2
√

2T

2B
+
BTG2

G
√

2T
=
BG
√
T√

2
+
BG
√
T√

2
= BG

√
2T .

Therefore the regret is sublinear and is in fact O(
√
T ). This analysis highlights that picking a correct learning

reate is crucial for online gradient descent. Estimating the constants D, G and T can be difficult in practice
and there has been a lot of work to solve that issue. By picking an η that varies with t we can achieve a
regret that is almost as good without knowing T in advance. Furthermore, T and G can be eliminated by
rephrasing the problem in terms of gt. These topics will be covered in future lectures.

3 Generalizing Beyond Linear Loss Functions

We can envision the online learning task as the following diagram:

-

�

-

�
Adversarial World Transformation Online Algorithm

ft

wt+1

f̂t

ŵt+1

Figure 1: Block diagram for online learning game

The arrows illustrate one round of the online learning game. First, the adversary sends a loss function ft.
Next it gets transformed in the transformation block and the transformed f̂t is sent to the online algorithm.
The online algorithm responds with a point ŵt+1. This point may then have to be transformed again into
the wt+1 that is sent back to the adversary. The dashed box represents the parts that we have control over.
Through our previous analysis we have shown that the FTRL algorithm can be envisioned as a transforma-
tion of the FTL algorithm. Below is the diagram for FTRL:

- -

�
Adversarial World

Transformation

Add R(w) Online Algorithm

FTL

ft

wt+1

f̂t

Figure 2: Block diagram for FTRL

The trasnformation reflects adding a regularizer term to the standard FTL algorithm. As can be seen in the
diagram, wt+1 does not need to be transformed on the way back to the adversary.
Similar to the FTL to FTRL transformation, we can think of generalizing the FTRL algorithm by trans-
forming convex loss functions into linear loss functions that we already know how to analyze.

4



- -

�
Adversarial World

Transformation

Convex ⇒ Linear Online Algorithm

FTRL

ft

wt+1

f̂t

Figure 3: Block diagram for FTRL with convex loss functions

As in Figure 2, we don’t need to transform wt+1 on the way back to the adversary. To determine the
correct transformation we first need to review convexity.

4 Convexity

Definition 7. A function f : Rn → R is convex if ∀α ∈ [0, 1] and ∀u,w ∈ Rn:

f(αw + (1− α)u) ≤ αf(w) + (1− α)f(u).

-

6

x

y

f

u w

r
rhhhhhhhhhhhhh

α = 0

α = 1

Figure 4: Illustration of convexity definition

The curve represents a convex function f and the line above it is y = αf(w) + (1 − α)f(u) for varying
values of α. The above definition states that a convex function must be below that line for any choices of
u and w. A key property of convex functions (that will turn out to be very useful for transforming them
into linear functions) is that a tangent line drawn at any point will always be below the function and will
approximate it well in a small neighborhood around the tangent point. Differentiability is not necessary for
this property to hold. For example, the absolute value function is not differentiable at the origin, however
any tangent line through the origin satisfies this property.

-

6

x

y

f

@
@
@
@

Figure 5: Illustration of tagent line property

5


