
CSE599s, Spring 2012, Online Learning Lecture 13 - 05/08/2012

Contextual Bandits
Lecturer: Brendan McMahan Scribe: Sergey Feldman

1 Review - The Bandit Problem

Last class, we introduced the “bandit” problem, i.e. online learning with partial feedback. Here is how it
works. Let a be an action in set A (abusing notation, we will also use A to be the number of actions in set
A). On the tth round:

1. The adversary picks a loss function for all possible actions `t(a) ∈ [0, 1].

2. We choose a′ ∈ A (using randomness). For the the exponentiated gradient (EG) algorithm, we would
sample a′ ∼ wt(a).

3. We then pay `t(a
′), observing only our loss.

To deal with this setting, we used FTRL with the negative entropy regularizer (also known as EG), and
replaced (the now unknown) gt ∈ [0, 1]A with its unbiased estimate:

g̃t(a) =

{
`t(a

′)
wt(a′) if a = a’

0 else,

with
E[g̃t(a)] = gt(a).

Using EG on g̃ is known as the EXP3 algorithm.

2 Contextual Bandits

So far we have defined regret with respect to a single best action. But this definition doesn’t make a lot of
sense in many real-world scenarios. Consider the case of serving ads on a search engine. Given the millions
of different queries and ads, it is useless compare our algorithm’s performance against a single best ad for
all of the rounds.

So, what to do? A naive solution is to run EXP3 separately for each of the queries. But this solution
is not the best. How do we decide what constitutes a separate query? Is “flower shop” different from “rose
shop”? Thus, we turn to “contextual bandits,” also known as “bandits with side information.”

First, some notation. Let xt ∈ Rn be the context on round t. Let e : RN → ∆(A) be the expert that maps
context xt to the probability simplex ∆(A) over the set of actions A. In other words, each expert provides a
probability distribution over all of the possible actions, as a function of the context available on the current
round. We won’t worry about where these experts are coming from, but just assume that we have them. In
previous settings, we maintained and updated wt, a distribution over actions. In the contextual bandit wt

is instead a distribution over experts. Thus, on tth round we replace “Choose a′ ∼ wt(a)” with

(a) Choose expert e′ ∼ wt(e) and then

(b) choose a′ ∼ e′(a),

after which we get feedback about our choice and the loss (or reward) of action a′ only. Our goal is to
minimize regret w.r.t. the post-hoc best expert (as opposed to the post-hoc best action). There are other
formulations of the contextual bandits problem, but we will only consider this one, which is often called
“multi-armed bandits with expert advice.”

1



An Example

To get a better idea of this setting, let’s look at one round of EXP3 using the ad example. We are given 4
experts: e1, e2, e3, e4. To keep things simple, assume these experts can only choose one ad (action) a from
the set of ads (actions) A = {a1, a2, . . .}. Here are some ads:

a1 = “buy pet lizards”

a2 = “1-800-petunias”

a3 = “cheap mp3 players”

a4 = “find local florists”

a5 = “affordable dragon souls”,

and so on. Let’s say on round t the experts made the following choices:

e1 chose a2

e2 chose a2

e3 chose a4

e4 chose a4

The algorithm chose e1 by sampling from wt(e), but this expert’s ad choice, a2, was not clicked (i.e. it was

the wrong action). The algorithm then assigns loss `t(a2)
wt(a2)

to expert e1. We estimate that the rest of the

experts e2, e3, and e4 all incur a loss of 0. However, observe that we should be able to do better than this:
we know expert e2 also wanted to play action a2, and since a2 was actually the ad we played, we should be
able to use a better estimate for the loss of e2. This is the idea of the EXP4 algorithm.

3 Regret Bounds for Bandits with Expert Advice

We assume that there are M experts and A actions. There are a number of algorithms we could run in the
contextual bandit setting. Here they are, along with their expected regret:

Run EXP3 on the experts and get
E[regret] ≤

√
2TM logM

Run the original EXP4 and get
E[regret] ≤

√
TA logM

Run a revised EXP4 and get
E[regret] ≤

√
TS logM,

where S ≤ min{A,M}.

Clearly, the revised EXP4 is the best of both worlds, so that’s what we’re going to analyze. We will finish
up today’s lecture by establishing some notation.

Let et,i ∈ ∆(A) be the recommendation of the ith expert on the tth round, so
∑

a et,i(a) = 1 and
et,i(a) ≥ 0 for all i and t. For the contextual bandit setting we can write et,i = êi(xt), where êi is a function
that makes recommendations strictly as a function of the context. We will analyze the more general setting,
allowing the experts to vary with time and feedback: for our purposes, an expert i is nothing more than
t vectors et,i ∈ ∆(A). We don’t care how these are generated, our bounds will only hold with respect to
whatever set of expert recommendations the algorithm receives.

2



Let random variable Li be the cumulative loss of the ith expert. Its expectation can be written

E[Li] =

T∑
t=1

∑
a∈A

et,i(a)`t(a).

Let
Lopt = min

i
E[Li]

be the optimal post-hoc cumulative loss, and let

Lalg =

T∑
t=1

`t(a
′
t)

be the cumulative loss of the algorithm. The expected regret is then

E[regret] = E[Lalg]− Lopt.

3


