CSE599s Spring 2012 - Online Learning Homework Exercise 1 - due 4/12/12

In the online optimization setting, the player plays a point $w_t \in \mathcal{W}$, the adversary responds with a non-negative function f_t , and the player suffers a loss of $f_t(w_t)$. Assume that \mathcal{W} is a bounded set and that each f_t is lower bounded on \mathcal{W} . The player's *regret* after T rounds is defined as

$$\sum_{t=1}^{T} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w) .$$

A regret bound is a function R(T) such that for any sequence f_1, \ldots, f_T it holds that

$$\forall T \quad \sum_{t=1}^{T} f_t(w_t) - \min_{w \in \mathcal{W}} \sum_{t=1}^{T} f_t(w) \leq R(T) .$$

1. First, prove that we can assume, without loss of generality, that min $f_t(x) = 0$ for each t. An online optimization algorithm is *conservative* if

$$f_t(w_t) = 0 \quad \Rightarrow \quad w_{t+1} = w_t$$

In other words, a conservative algorithm keeps playing the same point as long as it doesn't suffer any loss. Let A be an online optimization algorithm with a regret bound of R(T). Use A to define a conservative online optimization algorithm A' with the same regret bound.

- 2. Recall that a function f is convex if $f(\alpha x + (1 \alpha)x') \leq \alpha f(x) + (1 \alpha)f(x')$ for any $\alpha \in [0, 1]$ and any x and x' in f's domain. Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function and let $g : \mathbb{R} \to \mathbb{R}$ be a convex monotonically non-decreasing function. Prove that the composition $g \circ f$ is convex $(g \circ f(x) \equiv g(f(x)))$.
- 3. Consider the problem of managing an online stock portfolio in a market with no transaction costs. Assume that the market has n different stocks, we can change our investment portfolio at the end of each trading day, and the prices of the n stocks at the end of day t are denoted by the vector c_t . Our initial wealth is ϕ_0 and our wealth after round t is ϕ_t . On each round, we play a distribution vector $w_t \in \mathcal{W}$ (\mathcal{W} is the set of non-negative vectors that sum to 1). Namely, on round t, we invest $\phi_{t-1}w_{t,i}$ dollars in stock i.

- Write ϕ_t in terms of w_1, \ldots, w_t and c_0, c_1, \ldots, c_t .
- A constantly rebalancing portfolio (CRP) defined by a fixed probability vector w is an investment strategy that rebalances every day so that exactly w_i of our wealth is invested in stock i on each day. Let ϕ_t^w denote the wealth of the CRP defined by w on day t. Write ϕ_t^w in terms of w and c_0, c_1, \ldots, c_t .
- Define the wealth of the best CRP in hindsight after T rounds as $\phi_T^{\star} = \max_w \phi_T^w$. Define regret after T rounds as $\log(\phi_T^{\star}/\phi_T)$. Show that minimizing this definition of regret is a special case of the online convex optimization framework discussed in class (Hint: use Problem 2 to show that $-\log(u \cdot v)$ is convex and write the portfolio managment problem as an online convex optimization problem).
- 4. Prove that the mistake bound that we proved for the Perceptron algorithm is tight. In other words, for any $\gamma > 0$ and any $\rho > 0$ find a sequence $\{(x_t, y_t)\}_{t=1}^{\infty}$ such that $||x_t|| \leq \rho$ for all t, such that there exists w^* with $||w^*|| = 1$ and $y_t w^* \cdot x_t \geq \gamma$ for all t, and such that the Perceptron makes exactly $|\rho^2/\gamma^2|$ mistakes.