388 Ch. 8 Graphs : - 4

§8.8 Graph Algorithms E

algorithm n. Any peculiar method of computing.
The American College Dictionary

Our study of digraphs and graphs has led us to a number of concrete
questions. Given a digraph, what is the length of a shortest path from one
vertex to another? If the digraph is weighted, what’s the minimum or
maximum weight of such a path? Is there any path at all? What are the e
components of a graph? Does removing an edge increase the number of
components? Does a given edge belong to a cycle? Do any edges belong to
cycles?

This section describes some algorithms for answering these questions
and others, algorithms which can be implemented on computers as well as
used to organize hand computations. The algorithms we have chosen are ..
reasonably fast, and their workings are comparatively easy to follow. Fora
more complete discussion we refer the reader to books on the subject, such as

Data Structures and Algorithms by Aho, Hopcroft and Ullman. rat]
We concentrate first on digraph problems, and deal later with modifica- cle:
tions for the undirected case. As we noted in § 8.3, any min-weight algorithm anc
can be used to get a shortest path-length algorithm simply by giving all edges . the
weight 1. We can use such an algorithm to see if there is any path at all from D
u to v in G by creating fictitious edges of enormous weights between vertices ta(li

which are not joined by edges in G. If the min-path from u to v in the
enlarged graph has an enormous weight, it must be because no path exists
made entirely from edges of G.

The min-weight problem is essentially a question about digraphs
without loops or parallel edges, so we limit ourselves to that setting. Hence
E(G) = V(G) x V(G), and we can describe the digraph with a table of the
edge-weight function W(u, v), as we did in § 8.3.

The min-weight algorithms we will consider all begin by looking at paths
of length 1, ie., single edges, and then systematically consider longer and 1
longer paths between vertices. As they proceed, the algorithms find smaller 3 Uy &«
and smaller path weights between vertices, and when they stop the weights :
are the best possible.

Our first algorithm just finds min-weights from a selected vertex to the
other vertices in the digraph G. To describe how it works, it will be
convenient to suppose that V(G)={l,...,n} and that 1 is the selected
vertex. Starting with 1, the algorithm looks at additional vertices one at a
time, always choosing a new vertex w whose known best path weight from 1 is
as small as possible, and updating best path weights from 1 to other vertices
by considering paths through w. It keeps track of the set of vertices whichit = §
has looked at, by putting them in a set L, and it doesn’t look at them ; che
again. At any given time, D(j) is the smallest weight of a path from I to j 1
whose vertices lie in L. Here is the recipe. 2 get

EXAMPLE 1 Co
1S g

§8.8 Graph Algorithms 59

DS LN L
LE B]

Set L = {1}
Fori=1ton
Set D(i) = W(l, i)
End for
While V(G\L # &
Choose k in V(G)\ L with D(k) as small as possible
Put kin L
For each j in V(G)\ L
If D(j) > D(k) + W(k,}))
Replace D(j) by D(k) + W(k,j)
End for
End while
End §

We have written this algorithm in a style similar to a computer program,
rather than in our usual “Step 1, Step 2, ...” format, to make the looping
clearer. Each time the algorithm runs through the While loop, it goes back
and checks to see if V(G)\ L is empty yet. If it is, the algorithm stops. If not,
the algorithm goes through the loop again, with a new k.

We need to check that this algorithm stops, and that the final value of
D(j)is W*(1,) for each j. We also want to get some estimate of the time it
takes the algorithm to run. First, though, let’s look at how it works.

ePLE 1t Consider the weighted digraph G shown in Figure 1(a). Its edge-weight table
is given in Figure 1(b).

w v v v Uy Us Y U
L2 7 Uy 2 Vg [R A A . T
g 1 - ‘(t - CP Ul ©0 3 9 oo oo oo oo
3 v i N l p . 8 ; U2 oo [o) 7 ‘ 00 o0
. :) vy oo 2 oo 7 o0 o0 oo
Uy e Al’ i 5 47 vy © o o o e 2 §
5 4 7 - : 9 & Vg 00 oo 4 5 0 9 0
g il ,(, ; \ 3 vg 0o 00 00 00 o) 0o 4
Uy 4 Us v, v, 0 o0 o0 o0 0 o0 oo
(a) (b)

The table in Figure 2 shows how the values of L and of D(2), ..., D(7)
change as the algorithm progresses, starting with 1.

Notice that the values in the columns decrease with time, and that once j
gets into L the value of D(j) doesn’t change. |

390 Ch. 8 Graphs

L D(1) D(2) D(3) D(4) D(5) D(6) D(7) Comment
[} %0 3 9 T W0 s 0 Initial data
11,2} %0 3 9 10 4 0 e Found v,v,0,
and v,v,v,
1, 2,5}] 3 8 9 4 13 «© Found v,r,v40,,
00,0504 and
Uy U, s Ug
1,2,5 3} % 3 8 9 4 13 %G No improvement
{1,2,5.3, 4} @ 3 8 9 4 i1 17 Found v,v,v50,0
and ¢,v,U50,0,
11, 2,5, 3,4, 6} £ 3 8 9 4 1t 15 Found vv,050,0,0,

Theorem |

Lemma

Figure 2

If the edge weights in G are nonnegative, then DIJKSTRA'S algorithm stops
with D(j)= W*(l,j)forj=2,...,n

Proof. Since each pass through the While loop in the algorithm adds
one more vertex to L, the algorithm makes n — | trips through the loop and
then stops. For convenience, denote the final value of D(j) by D*(j). It is not
at all obvious that D*(j) = W*(1, j), because the algorithm makes “greedy”
choices of new vertices whenever it gets a chance. Greed does not always
pay—consider trying to get 40 cents out of a pile of dimes and quarters by
picking a quarter first—but it works this time.

Notice first that W*(1,j) < D(j) at all times and for all j, because
D(j) = W(l, j) at the start, and any replacement value is the weight of some
path from 1 to j. The following lemma displays the key property of
DIJKSTRA’S algorithm.

If j is chosen before k, then D*(j) < D*(k).

Proof. Suppose the lemma is false. Among all pairs {j, k> with j chosen
before k and with D*(j) > D*(k), take a pair with the time interval between
the two choices as small as possible.

When j is chosen, k is not yet in L, so that D*(j) = D(j) £ D(k). At the
end D*(k) < D*(j), so there must be an m chosen between j and k for which
D(k) is replaced by D(m) + W(m, k) with D(m) + W(m, k) < D*(j). Then also
D*(m) < D(m) £ D(m) + W(m, k), since W(m, k) =0 by the hypothesis of
Theorem 1. But this means that D*(m) < D*(j) with the time interval
between the choices of j and m less than that between j and k, a contradic-
tion. |

We return to the proof of Theorem 1. We know that W*(1, j) < D*(j)
for every j, and we want to show equality holds. Suppose not, and among
values of j with W*(1,) < D*(j) choose one with W*(1,j) as small as
possible.

il

Ji

15

it
th

Ve
re

ar
ck
to
al

ug
is

ve
ap
ar
pr
pr
ex

£%5

§8.8 Graph Algorithms 391

Consider a path [---kj of weight W*(1,j). For each vertex m in this
path, W*(1, m) is the weight of the initial segment 1 ---m by the Proposition
of § 8.3. Hence, in particular, W*(1, m) < W*(1, j), and we may suppose that
Jj is the first vertex on the path for which W*(1,j) < D*(j). If k = 1, ie., if the
path has length 1, then D*(j) > W*(1, j) = W(l,j) = D(j) at the start, which
1s absurd. So k # 1.

Since k precedes j on the path, W*(1, k) = D*(k), so

D*(k) £ D¥(k) + Wik, j) = W*(L, k) + W(k, j) = WX(1,j) < D*(j).

By the lemma, this means that k is chosen before j. So at the time k is chosen
it must be true that W*(1, k) = D*(k) = D(k). Atthe end of that pass through
the loop,

W*(1,j) = W*(1, k) + W(k, j) = D(k) + W(k,)
= D()) [by replacement, if needed]
2 D*(j).,

a final contradiction. |

How long does DIJKSTRA'S algorithm take for a digraph with n
vertices? The largest part of the time is spent going through the While loop,
removing one of the original n vertices at each pass. Time to find the smallest
D(k) is at worst O(n) if we simply examine the vertices in V(G) one by one,
and in fact there are sorting algorithms which will do this faster. For each
chosen vertex k there are at most n comparisons and replacements, so the
total time for one pass through the loop is at most O(n). All told, the
algorithm makes n loops, so it takes total time O(n?).

If the digraph is presented in terms of successor lists, the algorithm can
be rewritten so that the replacement/update step only looks at successors of
k. During the total operation, each edge is then considered just once in an
update step. Such a modification speeds up the overall performance if | E(G)|
is much less than n?.

DIJKSTRA'’S algorithm finds the weights of min-paths from a given
vertex. To find W*(v;, v)) for all choices of vertices v; and v; we could just
apply the algorithm n times, starting from each of the n vertices. There is
another algorithm, originally due to Warshall and refined by Floyd, which
produces all of the values W*(v;,v;) at the end, and which is easy to
program. Like DIJKSTRA'S algorithm, it builds an expanding list of
examined vertices and looks at paths through vertices on the list.

Suppose that V(G) = {v,,...,v,}. WARSHALL'S algorithm works with
ann x nmatrix W, which at the beginning is the edge-weight matrix W, with
W, i, j] = W(v;, v)) for all i and j, and at the end is the min-weight matrix
W, = W* with W*[i, jT = W*(v,, v)).

