
More Prolog Mini Exercises
Derivation Trees; Difference Lists; Controlling Search — Answer Key
These questions use the Prolog rules in the lecture notes (both the basics and the ones on controlling search).

1. Draw the derivation tree for the following goals:

?- reverse([1],R).

Please see the separate scan of the hand-drawn tree. Also try running the goal with the Prolog trace facility.

2. Consider mymember and also the member_cut rule defined in the notes on controlling search. What are all
the answers that Prolog returns for the following goals?

?- mymember(1,[A,B,C]).
A = 1 ;
B = 1 ;
C = 1 ;
false.

?- member_cut(1,[A,B,C]).
A = 1.

3. What are all the answers that Prolog returns for the following goals?

?- mymember(X,[1,2]), mymember(X,[0,2,2]).
X = 2 ;
X = 2 ;
false.

(Note that you get the same answer twice!)

?- member_cut(X,[1,2]), mymember(X,[0,2,2]).
false.

?- mymember(X,[1,2]), member_cut(X,[0,2,2]).
X = 2 ;
false.

?- member_cut(X,[1,2]), member_cut(X,[0,2,2]).
false.

4. What are all the answers that Prolog returns for the following goals?

?- not(mymember(1,[1,2,3])).
false.

1

?- not(mymember(5,[1,2,3])).
true.

?- not(mymember(X,[1,2,3])).
false.

?- mymember(X,[1,2,3]), not(mymember(X,[1,2,4])).
X = 3 ;
false.

?- not(mymember(X,[1,2,4])), mymember(X,[1,2,3]).
false.

5. Consider the standard version of append:

append([],Ys,Ys).
append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

If you know that the first argument is ground (that is, fully instantiated, containing no variables), there is a more
efficient version that you can write by including a cut.

(a) Define such a version.

append([],Ys,Ys) :- !.
append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

(b) Give an example of a query that has exactly the same behavior for both the standard version and the version
with a cut.

append([1,2],[3,4,5],X).

(c) Give an example of a query that behaves differently for for the standard version and the version with a cut.

append(A,B,[1,2,3]).

(d) What restrictions do we need on the inputs for the two versions to behave exactly the same? (Is it that the
first argument is ground?)
No, it’s a little more general: just that the first argument not be a variable or a list with a variable as the tail
of the list.

6. Which of the following lists represent valid difference lists? For valid difference lists, what list do they repre-
sent?

[1,2|T]\T -- valid, represented [1,2]
[1,2,3]\[] -- valid, represents [1,2,3]
[1,2,3]\[1,2] -- not valid
[1,2,3|T]\[3|T] -- valid, represents [1,2]
[1,2,3]\[1,2,3] -- valid, represents []

2

7. Write the list [squid,clam] as a difference list (in the most general possible way). Also draw a box-and-
arrow diagram of the first part of the difference list.

[squid,clam|T]\T

_______________ ________________
o	----	----->	o	T		
___	___	_______		____	___	_______

| |
| |

squid clam

Notice that this remains a valid difference list representation of [squid,clam]no matter what we unify with
T. For example, if we unify T with [octopus], we get this difference list:

[squid,clam,octopus]\[octopus]

which still represents [squid,clam]. Here’s the box-and-arrow representation of what happens to
[squid,clam|T]:

_______________ ________________ _______________
							/			
o	----	----->	o	----	--->	o	/			
___	___	_______		____	___	_______		___	___	___/___

| | |
| | |

squid clam octopus

8. Using the clpr library, write a rule mymin such that if you call mymin(A,B,C), C will be the minimum of A
and B.

mymin(X,Y,X) :- {X<=Y}.
mymin(X,Y,Y) :- {X>Y}.

9. Write a rule solve using the clpr library that solves the simultaneous equations 2x+ 3y = 8 and x+ y = 3.

solve(X,Y) :- {2*X + 3*Y=8, X+Y=3}.

10. Again using the clpr library, write a rule sum such that for sum(Xs,S), S is the sum of the numbers in the list
Xs. You can assume the list consists only of numbers. For example sum([],S) should succeed with S=0.0,
sum([3,4],S) should succeed with S=7.0, and sum([A,A],10) should succeed with A=5.0.

sum([],0).
sum([X|Xs],S) :- sum(Xs,S1), {X+S1=S}.

3

